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ABSTRACT 
 

The role of iron has gained attention in Parkinson’s disease (PD) because of its 

complicated interplay with other pathological mechanisms such as oxidative stress and 

inflammation. Epigallocatechin gallate (EGCG) might be a good candidate for the treatment 

of PD due to its antioxidant, iron chelating and anti-inflammatory properties. The overall 

objective of my project is to determine the neuroprotective effects of EGCG in both in vitro 

and in vivo models of PD and to investigate whether the protective effect is via regulation of 

iron homeostasis. 

In my first project, I investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA)-

induced apoptosis in a cell culture model of PD. We down regulated hepcidin using siRNA 

interference techniques in N27 dopaminergic cells and compared with control siRNA 

transfected cells to investigate the role of hepcidin in 6-OHDA-induced neurodegeneration. 

We measured cell viability, cell apoptosis by caspase-3 activity and DNA fragmentation, 

intracellular free iron, and protein damage. We found hepcidin knockdown protected N27 

cells from 6-OHDA-induced neurotoxicity by reducing intracellular free iron, protein 

oxidation, and decreasing caspase-3 activity and DNA fragmentation.  

In the second project, we determined whether EGCG protected from hydrogen peroxide 

(H2O2)- and tumor necrosis factor alpha (TNFα)-induced oxidative stress and inflammation 

in N27 cells. We found EGCG pretreatment significantly prevented H2O2- and TNFα-

induced apoptosis by normalizing cell viability and caspase-3 activity. The observed 

neuroprotection may be through the inhibition of oxidative stress and inflammation, which 

was possibly mediated by hepcidin and ferroportin.  
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In my third project, we determined the neurorescue effect of EGCG (25 mg/kg, oral 

administration) against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP, 20 mg/kg, 

IP)-induced neurodegeneration. The neurorescue effect of EGCG was assessed by motor 

behavior tests, neurotransmitter analysis, oxidative stress indicators, and iron related protein 

expressions. We found EGCG significantly rescued MPTP-induced neurotoxicity by 

increasing the rotational latency, increasing dopamine, and reducing serum protein carbonyl 

concentrations. In addition, the protection of EGCG may have been associated with the 

regulation of iron efflux protein ferroportin in the substantia nigra.  

Overall, my project demonstrated that EGCG has potential therapeutic value for the 

treatment of PD and the protective effect might be associated with its ability to alter iron 

regulated proteins, hepcidin and ferroportin and reduce oxidative stress.  

 
.
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CHAPTER 1  GENERAL INTRODUCTION 

Introduction 
Parkinson’s disease (PD) is a progressive and disabling neurodegenerative disorder 

afflicting the elderly. It is characterized by a number of motor symptoms such as tremor, 

rigidity, slow movement, and postural instability and non-motor symptoms including 

cognition impairment, depression and insomnia.  

The medications and therapies including the precursor of dopamine levodopa, the 

monoamine oxidase B inhibitor, dopamine receptor antagonist, catechol-o-methyl transferase 

inhibitor can only relieve the symptoms but not able to cure or reverse the progression of the 

neurodegenerative process (Singh et al., 2007). Moreover, serious side effects of drugs 

including psychiatric symptoms, cognitive impairment and dyskinesia further limit their use 

in PD patients (Guridi et al., 2012). Therefore, there is a need to identify the pathogenic 

mechanisms leading to disease development and find the neuroprotective therapies to slow 

down or even reverse the progression of PD.  

Recent findings indicate that mitochondrion dysfunction, oxidative stress, abnormal 

protein accumulation, neuroinflammation, excitotoxicity are considered as key molecular 

mechanisms contributing to the cell death in both sporadic and familial PD (Thomas and 

Beal, 2007; Dexter and Jenner, 2013). These factors may interact with each other and result 

in snowball effects triggering or exacerbating the neurodegenerative process. The role of iron 

has increasingly gained attention in PD due to its complicated crosstalk with other 

pathological mechanisms including its ability to induce oxidative stress and 

neuroinflammation, promote protein aggregation, and exacerbate neurodegeneration 
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(Mounsey and Teismann, 2012). Iron is an essential element in the human body and 

possesses key physiological functions by participating in the electron transfer trough the 

oxidation-reduction reactions due to its existence of two oxidation states. It is a component of 

vital proteins such as hemoglobin, cytochromes and involved in numerous biological 

processes including oxygen transport, mitochondrion respiration and DNA biosynthesis 

(MacKenzie et al., 2008). However, excessive iron is deleterious due to the generation of 

reactive oxygen species (ROS) such as highly reactive hydroxyl radicals via the Fenton 

reaction and the initiation of DNA oxidation, protein damage and lipid peroxidation 

(Kalinowski and Richardson, 2005). Consequently, iron uptake, storage, utilization is highly 

regulated by specialized proteins to prevent the participation of free iron in Fenton reaction-

mediated damage. Hepcidin is a small peptide produced mainly in the liver in response to 

inflammation, iron accumulation and oxidative stress (Ganz, 2005). Hepcidin binds to the 

cellular iron exporter ferroportin (Fpn) and induces a conformational change and lysosomal 

degradation, which leads to decreased iron efflux (Myhre et al., 2013). By this mechanism, 

hepcidin regulates both systematic and intracellular iron metabolism. Recent studies have 

demonstrated there is a wide distribution of hepcidin and Fpn in the human brain and they are 

co-localized in neurons and astrocytes, suggesting they have roles in brain iron homeostasis 

(Wang et al., 2010; Sun et al., 2012; Raha et al., 2013).  

Although it is not clear whether iron overload is a cause or an effect of PD, accumulating 

evidence suggests that the disruption of iron homeostasis leading to nigral iron elevation is an 

important feature in PD pathogenesis (Ayton and Lei, 2014). Postmortem studies have shown 

that increased levels of iron deposits in the substantia nigra (SN) and globus pallidus are 

present in parkinsonian brains (Gotz et al., 2004; Rhodes and Ritz, 2008), which was also 
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observed in living patients measured via MRI and ultrasound techniques (Kaur and Andersen, 

2004). The process of iron accumulation in PD may be caused by the imbalance of iron 

regulation mechanism and increased reactive free iron pool, such as divalent metal 

transporter-1 (DMT-1), transferrin receptor (TfR) or lactoferrin receptor-mediated increased 

iron uptake, ceruloplasmin and Fpn-facilitated decreased iron export, or ferritin or 

neuromelanin regulated-altered iron storage (Mounsey and Teismann, 2012; Weinreb et al., 

2013; Le, 2014). 6-hydroxydopamine (6-OHDA) has been shown to induce neurotoxicity by 

upregulating DMT-1 and hepcidin and downregulating Fpn which lead to intracellular iron 

overload conditions in a cell culture model of PD (Chen et al., 2015a) 

Based on the correlation between iron dysregulation and PD, use of iron chelators might 

be a potential treatment for preventing the onset or slowing down the progress of the disease 

by reducing excessive free iron in the brain. Studies have shown that a number of iron 

chelators such as clioquinol or deferoxamine (DFO) exert neuroprotection in animal models 

of PD (Kaur et al., 2003; Fine et al., 2014). However, disadvantages associated with these 

iron chelators such as its poor ability to cross blood brain barrier and severe adverse effects 

impedes its further investigation in clinical studies.  

Natural iron chelators derived from food and plants have attracted increasing interest 

because of their low-toxicity over long term use, affordability and general acceptance. The 

major tea polyphenol epigallocatechin gallate (EGCG) is a potent neuroprotective agent for 

the treatment of neurodegenerative disorders. The beneficial effects of EGCG may be 

associated with its antioxidant, iron chelating and anti-inflammatory properties (Figure 1-1). 

In a recent study, consumption of green tea (3 cups/day) for 3 months improved PD patients’ 

antioxidant status (Chen et al., 2015b).  
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Our long-term goal was to identify the effect of a natural compound with fewer side 

effects than traditional therapies to slow down the progression of PD. The overall objective 

of this project was to investigate the neuroprotective effect of EGCG in both in vitro and in 

vivo models of PD and determine whether the protection is through altering iron related 

proteins and maintaining intracellular iron homeostasis. Our central hypothesis was that 

EGCG exerts neuroprotection in both cell culture and animal models of PD, and the 

protection is  due to its inhibition of oxidative stress and inflammation through the alteration 

of iron related proteins and maintenance of intracellular iron homeostasis (Figure 1-1).  

 

Figure 1-1 Central hypothesis. EGCG: epigallocatechin gallate; Fpn: ferroportin. 

 

Specific aim 1: To determine the role of hepcidin in 6-OHDA-induced cell death by 

knocking down hepcidin expression in rat dopaminergic neuronal cell line (N27 cells). 
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Specific aim 2: To determine whether EGCG exerts neuroprotective action against 

hydrogen peroxide (H2O2)- and tumor necrosis factor alpha (TNFα)-induced neurotoxicity 

through regulating iron related proteins hepcidin and Fpn in N27 cells. 

Specific aim 3: To determine the neurorescue effects of EGCG in 1-methyl-4-phenyl-

1,2,3,6- tetrahydropyridine (MPTP)-induced PD in animals and to examine the involvement 

of iron-related proteins in that protective effect.  

 To address the specific aim 1, we downregulated hepcidin using siRNA interference and 

evaluated the role of hepcidin in 6-OHDA-induced neurodegeneration in N27 cells. We 

found that hepcidin knockdown protected N27 cells from 6-OHD-induced apoptosis by 

possibly regulating iron exporter Fpn and subsequent reducing cellular iron burden and 

oxidative damage. In the second study, we determined whether EGCG protected N27 cells 

from H2O2- and TNFα-induced neurotoxicity. We found that EGCG protected against both 

TNFα- and H2O2-induced neuronal apoptosis, and that neuroprotection may be through the 

inhibition of oxidative stress and inflammation, which is possibly mediated by hepcidin and 

Fpn. In the third study, we assessed the neurorescue effect of EGCG against MPTP-induced 

neurodegeneration. We found that EGCG restored MPTP-induced functional and 

neurochemical deficits and the neurorescue effects might be associated with regulating iron 

exporter Fpn in SN and reducing oxidative stress. All these findings suggest that iron 

regulatory proteins hepcidin and Fpn play important roles in the pathogenesis of PD and the 

neuroprotection of EGCG might be through the regulation of these proteins and reduction of 

brain iron overload and oxidative stress conditions.  
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Dissertation organization 
This dissertation contains five chapters, including a general introduction, three research 

papers, and a general conclusion. Chapter 1 is a general introduction. Chapter 2 is a literature 

review relevant to the projects. Chapter 3 is the first manuscript “Hepcidin Plays a Key Role 

in 6-OHDA-Induced Iron Overload and Apoptotic Cell death in a Cell Culture Model of 

Parkinson’s Disease” submitted to Parkinson’s Disease Journal. Chapter 4 is the second 

manuscript “Epigallocatechin Gallate Protects against tumor necrosis factor alpha- and 

Hydrogen Peroxide-Induced Apoptosis in a Cell Culture Model of Parkinson’s Disease” 

which will be submitted to the International Journal for Vitamin and Nutrition Research. 

Chapter 5 is the third manuscript “Neurorescue Effect of Epigallocatechin Gallate in an 

Animal Model of Parkinson's Disease” which will be submitted to the International Journal 

of Food Science and Nutrition. Chapter 6 is a general conclusion. Tables, Figures and 

legends in each chapter are placed at the end of each chapter. The list of references is cited 

and included at the end of each chapter. Some illustrations in the literature review are made 

using the template provided by motifolio.com. 
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CHAPTER 2  LITERATURE REVIEW 

Parkinson’s disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder that 

affects about 1.5% of the global population (Blesa and Przedborski, 2014). There are 

approximately 1.5 million individuals in the US suffering from PD and this number is 

expected to rise dramatically in the coming decades due to an increased aging population 

(Abdullah et al., 2015). Parkinson’s disease was first defined by James Parkinson in his 

paper entitled “Essay on the Shaking Palsy” and described as a neurological syndrome 

consisting of rest tremor, slowness, shuffling gait, flexed posture, festination, falls, soft 

speech, dysphagia, and saliva trickling from the mouth (Goetz, 2011; Fahn, 2015). 

Subsequently, for the next one century and a half, scientists continue to pursue the causes and 

pathogenesis of the disease, to identify the common symptoms and risk factors, and search 

for the treatments.  

Parkinson’s disease today can be characterized by the primary motor symptoms of 

tremor,	  rigidity, slowness of voluntary movement, and postural instability (Cronin-Golomb, 

2013). These symptoms result from the loss of tyrosine hydroxylase positive neurons in the 

substantia nigra pars compacta (SNpc) which leads to 70% to 80% of dopamine deficiency in 

the striatum, where their projections are located (Pickrell et al., 2011). Dopamine is an 

important catecholamine that controls locomotion, learning, working memory, cognition and 

emotion by binding to the specific membrane receptors on the neurons (Drozak and Bryla, 

2005). The major pathway for dopamine biosynthesis starts from dietary tyrosine. Tyrosine 

can also be synthesized by hydroxylation of phenylalanine. Tyrosine is then converted to L-3, 
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4-dihydroxyphenylalanine (L-DOPA) by the rate limiting enzyme tyrosine hydroxylase in 

dopaminergic neurons and further converted to dopamine by the enzyme aromatic amino acid 

decarboxylase (AADC) (Figure 2-1). 

 

Figure 2-1 Biosynthesis and metabolism of dopamine. TH: tyrosine hydroxylase; 
AADC: aromatic amino acid decarboxylase; COMT: catechol-o-methyltransferase; 
MAO: monoamine oxidase; L-DOPA: L-3,4-dihydroxyphenylalanine; DOPAC: 3,4-
dihydroxyphenylacetic acid; HVA: homovanillic acid. Figure adapted from (Elsworth 
and Roth, 1997). 

 
After synthesis, dopamine is stored in specialized storage vesicle in the cytoplasm. It can 

be released into the synaptic cleft by the mechanism of exocytosis, or taken back into the 

nerve terminals (Elsworth and Roth, 1997). The major end metabolites of dopamine are 

acidic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) or homovanillic acid (HVA) 

(Elsworth and Roth, 1997). When an excess amount of cytosolic dopamine exists outside of 

the synaptic-vesicle, dopamine is easily metabolized to produce intracellular reactive oxygen 
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species (ROS) through auto-oxidation or by enzymes such as monoamine oxidase (MAO) 

(Miyazaki and Asanuma, 2008).  

Outside of nigrostriatal pathways, other major dopaminergic pathways such as 

mesolimbic, mesocortical have also been identified in the mammalian brains (Figure 2-2).  

 

Figure 2-2 Major dopaminergic pathways. SN: substantia nigra; VTA: ventral 
tegmental area. Figure made using the template from Motifolio drawing toolkits 
(www.motifolio.com). 

 
These pathways play a key role in various vital central nervous system functions such as 

voluntary movement, feeding, reward, attention, working memory and learning (Beaulieu 

and Gainetdinov, 2011). Traditionally PD is defined according to its motor deficits, which 

reflects the impaired nigrostriatal pathway and degree of dopamine depletion in the striatum, 

particularly in the putamen. Recent studies have also identified the associated non-motor 

symptoms including olfactory dysfunction, cognitive impairment, psychiatric symptoms, 

sleep disorders, autonomic dysfunction, pain and fatigue, which occurs not only in the 

advanced disease but also in early states and considered as a key determinant of quality of 



www.manaraa.com

 12 

 

life (Chaudhuri and Schapira, 2009; Kalia and Lang, 2015; Miller and O'Callaghan, 2015). 

These cognitive impairment and neuropsychiatric symptoms indicate that other dopaminergic 

pathways are also affected during the course of the disease. For example,	  loss of mesocortical 

dopaminergic neurons may make the system more vulnerable to stress, as dopamine release 

in the cortex inhibits stress activated neurons in the nucleus accumbens (Hemmerle et al., 

2012). In addition, these non-motor symptoms may also be related to the involvement of the 

non-dopaminergic systems and other neurotransmitters such as serotonin and norepinephrine 

(Bonnet et al., 2012). The decreased activity and number of the serotoninergic neurons in the 

dorsal raphe nucleus and loss of noradrenergic neurons have been observed in PD patients, 

which may explain the development of depression during the disease course (Hemmerle et al., 

2012). 

Apoptosis is typically identified by characteristic cell morphology such as cell shrinkage, 

membrane blebbing, compartmentalization, nuclear condensation, and DNA fragmentation, 

which have been demonstrated in PD patients, and in vitro and in vivo models of PD 

(Venderova and Park, 2012). Neurons undergo apoptosis based on information from external 

or internal stimuli (Figure 2-3). The external pathway is termed as death receptor pathway 

mediated by the activation of death receptor via cytokines such as tumor necrosis factor alpha 

(TNFα) (Singh and Dikshit, 2007). Increased levels of cytokines such as TNFα and 

interferon ɣ have been reported in both patients and experimental models of PD, which may 

cause the activation of extrinsic pathways and induce apoptosis (Singh and Dikshit, 2007). 

The intrinsic pathway is activated in response to a number of stress conditions and involved 

in a series of events including mitochondrial potential change, increased oxidative stress, 

alteration in pro- and anti-apoptotic proteins, cytochrome c release, which eventually leads to 
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apoptosis via caspase activation. Intrinsic pathways of apoptosis have been well investigated 

in PD, and increased oxidative stress, decreased mitochondrial complex activity, altered 

expressional levels of pro and anti-apoptotic proteins such as BAX and BCL-2, cytochrome c 

release and caspase cascade activation have been demonstrated in PD pathogenesis (Singh 

and Dikshit, 2007; Levy et al., 2009; Venderova and Park, 2012).  

 

Figure 2-3 Intrinsic and extrinsic apoptotic pathways.  
 

Another pronounced pathological feature of PD is the abundant expression of 

intracytoplasmic eosinophilic inclusions known as lewy bodies of dopaminergic neurons in 

the SNpc, and other regions of the central and peripheral autonomic system (Olanow and 

Brundin, 2013). Lewy bodies can also be found in the normal aging brains and in patients’ 

brains with other neurodegenerative disorder such as Alzheimer’s disease (Lotharius and 

Brundin, 2002). The major component of Lewy bodies is alpha-synuclein (α-synuclein). The 

exact function of α-synuclein is not known but may involve in the vesicle trafficking during 

the neurotransmitter release and protect nerve terminals from injury (Kalia et al., 2013; 

Recasens and Dehay, 2014). The conversion of α-synuclein from a soluble monomer to 
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pathological oligomers and insoluble fibrils result in the disruption of membrane structure, 

mitochondrial dysfunction, impairment of protein clearance pathway, and enhanced oxidative 

stress, all of which can lead to neurodegeneration (Kalia et al., 2013; Roberts and Brown, 

2015).  

Risk factors of Parkinson’s disease 

  A number of factors including male gender, advanced age, genetic predisposition, 

environment exposure (pesticide exposure, prior head injury, rural living, beta blocker use, 

agricultural occupation, well water drinking) have been proposed to increase PD risk 

(Shulman et al., 2011; Kalia and Lang, 2015) (Figure 2-4). On the other hand, reduced risk 

of PD is associated with tobacco and coffee use, calcium channel blocker use, and non-

steroidal anti-inflammatory drug use (Noyce et al., 2012; Kalia and Lang, 2015).  

 

Figure 2-4 Potential risk factors in PD. 
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1.   Aging 
Age is considered as the most potent risk for PD with an average of onset of 

approximately 50 to 60 years (Beitz, 2014). A meta-analysis of world wide data indicates a 

steadily increased prevalence of PD with age (all per 100,000) : 41 in 40 to 49 years; 107 in 

50 to 59 years; 173 in 55 to 64 years; 428 in 60 to 69 years; 425 in 65 to 74 years; 1087 in 70 

to 79 years; and 1903 in older than age 80 (Pringsheim et al., 2014). This trend has important 

implications for public health and scientists to predict that the number of PD is expected to 

double by year 2030 due to the increased aging population (Dorsey et al., 2007; Kalia and 

Lang, 2015). Aging is characterized by a progressive decline of physiological functions and 

an increased susceptibility to certain diseases, and an increased risk of death (Gemma et al., 

2007). Research shows that aging affects many cellular processes including mitochondrial 

dysfunction, increased free radical production, increased genomic instability, shortened 

telomeres associated with reduced cell survival, reduced efficiency of chaperones, declined 

proteasome activity, imbalanced autophagy recycling (Hindle, 2010). All these processes can 

result in the accumulation of unrepaired cellular damage and weakened cellular 

compensatory mechanisms, leading to the acceleration of neurodegeneration. In addition, 

dopaminergic neurons in the substantia nigra (SN) age more rapidly than the majority 

neurons in other brain regions due to their particular vulnerability to the accumulated aging 

effects such as mitochondrial dysfunction and altered protein degradation pathway (Surmeier 

et al., 2010; Reeve et al., 2014). Recent research suggests that PD can be considered as the 

result of the slow neurodegenerative action of aging, which is accelerated by the repeated 

damage to dopaminergic neurons that accumulates over the life course (Rodriguez et al., 

2015).  
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2.   Genetic factors 
Although the majority of PD cases are sporadic, about 10% patients report a positive 

family history (Klein and Westenberger, 2012). The first evidence for the existence of 

genetic forms of PD is based on the identification of association between A53T mutation in 

the gene encoding α-synuclein (SNCA) and inherited PD (Collier et al., 2011). Current 

studies of the familial PD have discovered associated genes such as PAKIN, PINK1, DJ-1, 

LRRK2, VPS35, causing rare monogenic forms of the disease (Bonifati, 2014). Mutations in 

these associated genes have provided important insight into the molecular mechanisms 

involved in the disease pathogenesis such as mitochondrial or lysosomal dysfunction, protein 

aggregation, and autophagy-lysosomal pathway (Deas et al., 2011; Giraldez-Perez et al., 

2014; Thomas et al., 2014). For example, PARKIN gene is demonstrated to play an 

important role in mitochondrial function, including its ability to interact with mitochondrial 

transcription factor A to enhance mitochondrial biogenesis and its ability to maintain 

mitochondrial homeostasis through targeting damaged mitochondria for mitophagy (Thomas, 

2009). VPS35 mutation contributes to approximately 1% of familial Parkinsonism and 0.2% 

sporadic PD. Studies have shown that VPS 35 is crucial for endosome-trans-golgi trafficking 

and membrane protein cycling, and involved in both early endosome receptor recycling in 

dendritic spines and lysosomal ATPase recycling from multivesicular bodies (Vilarino-Guell 

et al., 2011; Lin and Farrer, 2014). In addition, genome wide association studies have 

identified more than 20 chromosomal loci modulating the risk of developing PD, supporting 

the extensive and complex genetic contribution to PD and implicating new proteins in the 

pathogenesis of the disease (Bonifati, 2014; Nalls et al., 2014).  
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3.   Environmental exposure 
In recent years, exposure to environmental agents including pesticides, metals and 

microbial toxins has been recognized as possible risk factors for PD. Among these 

environmental toxicants, pesticides are considered as the most persistent contaminants 

(Kanthasamy et al., 2005). The association between pesticides and PD first gained attention 

in 1980 upon the discovery that exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP), a substance structurally similar to the herbicide paraquat resulted in chronic 

Parkinsonism and dopaminergic neurodegeneration in humans (Freire and Koifman, 2012). 

From that time, various studies including case reports, ecological studies, mortality studies 

and case-control and cohort studies search for the possible association between pesticides 

exposure and the increased risk of PD (Freire and Koifman, 2012; Pezzoli and Cereda, 2013). 

Among these pesticides, paraquat, rotenone and dieldrin have been found to be strongly 

associated with the increased risk of PD (Kanthasamy et al., 2005; Berry et al., 2010; Tanner 

et al., 2011). Rotenone is a broad spectrum pesticide used in organic food farming based on 

its label as a natural product (Cicchetti et al., 2009). Plants containing rotenone have been 

used for centuries by people to catch fish, and currently it is still used as a pesticide to 

remove invasive fish species in lakes (Goldman, 2014). Research has shown rotenone can 

easily cross blood brain barrier and accumulates at mitochondrial complex I where it inhibits 

complex I activity and induces oxidative stress. Rotenone can also enhance the amount of 

mitochondrial ROS production, induce α-synuclein aggregation, trigger endoplasmic 

reticulum (ER) stress,  cause dopamine redistribution, activate microglial cells, and activate 

cytochrome C release and caspase dependent apoptotic cell death, which are all implicated in 

the pathogenesis of PD (Franco et al., 2010). Recent case-control study nested in the 
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Agricultural Health Study also demonstrated a strong association between human exposure 

of rotenone and PD risk (Tanner et al., 2011). Based on 110 PD cases and 358 controls, it 

was reported that PD developed 2.5 times as often in those who reported use of rotenone 

compared with nonusers, and a similar magnitude association was also observed even when 

exposure was truncated up to 15 years before PD diagnose. Paraquat is another most widely 

used herbicide worldwide. It is able to cross blood brain barrier and induces reduced motor 

activity and a dose-dependent loss of tyrosine hydroxylase positive striatal fibers and 

midbrain SNpc neurons after the systemic application to the mice (Blesa et al., 2012). The 

neurotoxicity of paraquat is associated with its ability to increase lipid peroxidation, generate 

ROS, decrease antioxidant enzymes, impair mitochondrial function, and increase expression 

and aggregation of α-synuclein (Goldman, 2014). Epidemiological studies also suggest the 

role of paraquat in the development of PD in humans (Liou et al., 1997; Tanner et al., 2011). 

Dieldrin is an organochlorine insecticide that was commonly used on crops from 1950 

to1970 and to control termites from 1972 to 1987 (Goldman, 2014). It is one of the more 

likely candidates for the development of PD. A postmortem study shows that dieldrin level 

was significantly higher in PD patients than those in control brains (Corrigan et al., 1998). A 

nested case control study with serum samples collected during 1968-1972 and analyzed in 

2005-2007 found an association between increasing dieldrin concentrations and increased 

odds of developing PD (Weisskopf et al., 2010a). It was suggested that dieldrin damages 

dopaminergic neurons by inducing oxidative stress, aggregation and fibrillation of α-

synuclein, disrupting the ubiquitin-proteasome system, and mitochondrion membrane 

potential, stimulating dopamine release leading to intracellular dopamine depletion, and 

activating caspases (Chhillar et al., 2013).  
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Exposure to metals like manganese, copper, lead or iron can occur at workplaces in 

primary metal production or metal working activities like welding, galvanizing, grinding or 

through the diet or medications (van der Mark et al., 2015). Although the evidence from 

epidemiological studies is limited and controversial, some studies suggest that prolonged 

exposure to metals might be a risk factor for PD (Wirdefeldt et al., 2011). One study 

examined the levels of mercury in blood, urine and hair and reported an increased risk of PD 

associated increased mercury levels (Ngim and Devathasan, 1989). A recent study also 

reported that mercury exposure negatively affected dopamine transporters in the striatum of 

workers at risk of mercury vapor exposure (Lin et al., 2011). Although the mechanisms 

remain unknown, it was suggested that the neurotoxicity of mercury is associated with its 

generation of oxidative stress through various routes, such as promoting lipid peroxidation, 

mitochondrial damage, and inducing superoxide production (Caudle et al., 2012). Lead is a 

non-essential, toxic metal that has caused extensive environmental contamination due to its 

widespread use. Although environmental levels of lead have been significantly reduced over 

the past several decades, it is still a health concern especially for infants and young children 

in critical periods of neurodevelopment. A large control study based on 121 PD patients and 

414 match controls found individuals who experienced the highest quartile of exposure were 

twice as likely to have PD as those in the lowest quartile of exposure (Coon et al., 2006). 

There are several mechanisms that might explain the neurotoxicity induced by lead. Lead 

was found to increase midbrain oxidative stress and lipid peroxidation, and enhance 

fibrillation and accumulation of α-synuclein (Goldman, 2014). In addition, studies found that 

lead decreased dopamine synthesis, turnover, and uptake in the midbrain, increased 

spontaneous dopamine release, and reduced tyrosine hydroxylase activity and the number of 
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spontaneously active dopaminergic neurons (Jadhav and Ramesh, 1997; Tavakoli-Nezhad et 

al., 2001; Weisskopf et al., 2010b). Manganese is a heavy metal that is widely distributed in 

the environment including air, water, and food. It is an essential element for biological 

function and serves as a cofactor for several enzymes such as superoxide dismutase, and 

plays an important role in the neurotransmitter synthesis and metabolism (Caudle et al., 

2012). However, exposure to high level of manganese is associated with several neurological 

symptoms such as motor dysfunction and neuropsychological impairments, which resemble 

PD symptoms and are defied as Parkinsonism (Olanow, 2004). In addition, manganese 

exposure is also considered as a risk factor for PD. A few studies have reported an earlier age 

at onset of PD was associated with occupational exposure to manganese (Racette et al., 2001; 

Ratner et al., 2014).  Excessive exposure to manganese was demonstrated to induce 

dopaminergic neurodegeneration by increasing oxidative stress, impairing ATP production, 

and causing protein aggregation as well as mitochondrial dysfunction (Chen et al., 2014). 

4.   Nutrition/ Diet in PD 
Recent research showed that lifestyle factors including nutrition/diet has an important 

influence on the risk of developing of PD during later life (Schulz and Deuschl, 2015). Some 

dietary factors are found to be involved in the etiology of neurodegeneration and increase the 

risk of PD, while other dietary factors may exert neuroprotection and is associated with a 

decreased risk of PD (Seidl et al., 2014). An early prospective study found a positive 

association between dairy consumption and the increased risk of PD, particularly in men 

(Chen et al., 2002). A meta-analysis by pooling the results of three prospective studies 

suggested that high dairy consumption can increase the risk of PD, especially in men, 

independent of calcium, vitamin D or fat intake (Chen et al., 2007). Similarly, a recent 
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population based prospective cohort study based on 26173 participants in Greece also 

confirms the results and shows a strong positive association between PD incidence and the 

consumption of milk but not cheese or yogurt (Kyrozis et al., 2013). A possible explanation 

for the positive association is that dairy products are contaminated with neurotoxic chemicals 

such as pesticides, or the potential effects of dairy products on circulating levels of uric acid 

(Chen et al., 2007). High dairy consumption is associated with a lower circulating level of 

uric acid. Uric acid is suggested to have neuroprotective effect and high serum uric acid is 

associated with a significantly reduced risk of PD (Andreadou et al., 2009).  

The association between vitamin D deficiency and the increased risk of PD has recently 

been proposed. A recent systematic review and meta-analysis showed that patients with 

vitamin D insufficiency [25(OH)D level <75nmol/L] had an increased risk of PD (OR 1.5, 

95% CI 1.1-2.0), and patients with vitamin D deficiency [25(OH)D level <50nmol/L] 

experienced a twofold increased risk of PD (OR 2.2, 95% CI 1.5-3.4) (Lv et al., 2014). A 

recent genetic study conducted a comprehensive genetic analysis of vitamin D receptor 

(VDR) in PD and found VDR as a potential susceptibility gene supporting the essential role 

of vitamin D in PD (Butler et al., 2011). The neuroprotective effects of vitamin D might be 

associated with its ability to stimulate the synthesis of nerve growth factor and glial cell line 

derived neurotrophic factor, sequester ROS and downregulate inducible nitric oxide synthase 

(iNOS) expressions (DeLuca et al., 2013). Recent studies have also identified the association 

between B vitamins intake and PD risk. A hospital based case-control study in Japan 

examined the association between dietary intake of folate, vitamin B6, Vitamin B12 and 

riboflavin and the risk of PD (Murakami et al., 2010). The result shows that low intakes of 

vitamin B6 but not of folate, vitamin B12 or riboflavin were associated with an increased risk 
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of PD. It is suggested that the neuroprotective role of vitamin B6 may be through its 

antioxidant capacities or its role in dopamine synthesis. 

Growing evidence suggests dietary patterns can play a protective role in PD. Dietary 

patterns represent a combination of food, which is considered as a more powerful predictor 

of health outcomes than a single nutrient (Gao et al., 2007). A prospective study of dietary 

patterns and risk of PD found dietary patterns including a high intake of fruits, vegetables, 

legumes, whole grains nuts, fish and poultry, a moderate intake of alcohol and a low intake 

of saturated fat was inversely associated with PD risk (Gao et al., 2007). Another dietary 

pattern analysis based on a multicenter hospital-based case-control study conducted in Japan 

also reported a dietary pattern with high intakes of vegetables, seaweed, pulses, mushrooms, 

fruits and fish may be associated with a decreased risk of PD (Okubo et al., 2012). In 

addition, tobacco use, coffee or tea drinking were also found to be associated with a lower 

risk of PD (Migliore and Coppede, 2009). A pooled analysis of tobacco use and risk of PD 

showed a dose dependent reduction of PD risk associated with cigarette smoking and 

potentially with other types of tobacco use (Ritz et al., 2007). A recent meta-analysis 

including 61 case-control and 8 prospective cohort studies also supports the inverse 

association between cigarette smoking and the risk of PD (Li et al., 2015). Although the 

exact mechanisms for the protective effects of smoking on risk of PD is not known, it is 

suggested that the major component nicotine in tobacco exerts neuroprotection by 

stimulating nicotinic acetylcholine receptors or inhibiting α-synuclein fibrillation (Li et al., 

2015). A linear dose relationship for decreased PD risk with tea and caffeine consumption 

were found in a meta-analysis and the strength of protection reached a maximum at 

approximate 3 cups/day for coffee consumption (Qi and Li, 2014). It is suggested that the 
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major bioactive compounds caffeine or polyphenol in tea and coffee may offer 

neuroprotection against the underlying dopaminergic neuron degeneration and prevent the 

onset of PD. 

5.   Epigenetics in PD 
 Epigenetics is the study of heritable changes in gene expression or function without 

changes in DNA sequence. Primary epigenetic modifications include DNA methylation, 

post-transcriptional modifications of histone and non-coding RNA mediated changes of gene 

expression (Feng et al., 2015). Recent research suggests that environmental factors such as 

heavy metals, pesticides or nutrition may affect PD risks through the epigenetic changes 

(Kwok, 2010). Studies have found that heavy metals such as arsenic, cadmium, chromium, 

lead, mercury, coppers, and nickel can induce changes in DNA methylation patterns either at 

the global or the individual gene level, or cause global histone modification, or miRNA 

expression (Ding and Zhu, 2009; Cheng et al., 2012; Ho et al., 2012). These epigenetic 

changes may modify the expression of critical genes and influence the phenotype of 

offspring and increase the risk of disease development at the later life (Kim et al., 2009). The 

epigenetics modification is also observed in pesticides mediated neurodegeneration. Dieldrin 

was found to increase histone acetylation to promote apoptosis in dopaminergic neurons 

(Song et al., 2010). In addition, dieldrin exposure during gestation and lactation was found to 

lead to persistent alteration of the developing dopaminergic system and induce dopamine 

dysfunction in an animal model of PD (Richardson et al., 2006). Epigenetics mechanism also 

linked the nutrition and the risk of PD. Nutrients such as folate, vitamin B12, methionine, 

choline and betaine are demonstrated to affect DNA methylation and histone methylation 

through altering one-carbon metabolism (Choi and Friso, 2010). Since the impaired one-
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carbon metabolism and altered DNA methylation potential was observed in PD (Coppede, 

2012), B vitamins might represent a promising preventative and therapeutic approach 

through exerting epigenetic regulations. 

6.   Experimental models of PD 
 Different experimental models have been developed to understand the PD etiology, 

pathology, and test the neuroprotective strategies. 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridineis a commonly used neurotoxin for inducing both rodent and primate 

models of PD (Duty and Jenner, 2011). It was discovered accidently in 1982, when young 

drug addicts mysteriously developed parkinsonian syndrome after intravenous injection of 

this compound. 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridineis is currently considered as 

the gold standard for toxin based animal models of PD since it replicates almost all hallmarks 

in PD except the formation of lewy bodies (Blesa et al., 2012). 1-methyl-4-phenyl-1,2,3,6- 

tetrahydropyridineis can cross the blood brain barrier easily due to its highly lipophilic 

property and is metabolized to its major toxic metabolite 1-methyl-4-phenylpyridinium 

(MPP+) by monoamine oxidase B in astrocytes. 1-methyl-4-phenylpyridinium can enter 

neurons by the dopamine transporter, inhibit mitochondrial complex I activity, leading to 

increased oxidative stress and decreased ATP production and apoptosis (Figure 2-5). 6-

hydroxydopamine (6-OHDA) is a neurotoxin that has been used widely in an animal model 

of PD (Figure 2-5). It is a hydroxylated analog of dopamine and has high affinity for their 

catecholaminergic transporters like dopamine transporter (Le et al., 2014). Once in the 

neurons, it is accumulated in cytoplasm and undergoes auto-oxidation, producing a large 

amount of free radicals such as hydrogen peroxide (H2O2), and inducing dopaminergic 

neuronal damage (Blandini et al., 2008). In addition, 6-OHDA can also initiate cell damage 
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through mitochondrial complex I inhibition, cytochrome c release, activation of caspase 

cascades, and inducing kinase signaling modulation accompanied with inhibition of 

antioxidant systems (Tobon-Velasco et al., 2013).  

 

Figure 2-5 Mechanisms involved in the neurotoxicity of 6-OHDA and MPTP. 6-OHDA: 
6-hydroxydopamine; MPTP: 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine; MPP+: 1-
methyl-4-phenylpyridinium; MAO-B: Monoamine oxidase B; DAT: Dopamine 
transporter; ROS: Reactive oxygen species. Part of the figure made using the template 
from Motifolio drawing toolkits (www.motifolio.com). 

 
Unlike MPTP, 6-OHDA can’t cross blood brain barrier and administration is carried out 

by the direct injection (frequently as a unilateral injection) in the SN, medial forebrain bundle 

consisting of efferent fibers from nigral cell bodies to the striatum, or striatum (Jagmag et al., 

2015). Degeneration of dopaminergic neurons starts within 12 h after injection of 6-OHDA 

into the SN or the medial forebrain bundle, with dopamine depletion 2-3 days later (Schober, 

2004). Intra-striatal injection of 6-OHDA can cause striatum terminal death first and then 

result in the progressive retrograde neuronal degeneration in the SN, replicating the 

pathological process of PD in humans. The model using 6-OHDA does not mimic all of the 

clinical features of PD. It induces dopamine depletion, nigral dopamine cell loss, and 
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behavior deficits, but not able to affect other brain regions such as olfactory structures (Blesa 

et al., 2012). In addition, 6-OHDA does not produce lewy body like inclusions. Recent 

research suggests that iron overload may play an important role in 6-OHDA mediated 

neuronal degeneration through the stimulation of dopamine oxidation (Hare and Double, 

2016).  

Pathogenesis in PD 

In the past 20 years, there have been significant advances in understanding the 

mechanisms of PD and different pathological factors including oxidative stress, 

mitochondrial dysfunction, altered proteolysis, neuroinflammation, excitotoxicity have been 

thought to contribute to the cell death in PD (Dexter and Jenner, 2013). These factors may 

interact with each other and result in a snowball effect triggering or exacerbating the 

neurodegenerative process. 

1.   Oxidative stress in PD 
A free radical is defined as molecule with unpaired electrons in their outer orbit. The 

free radicals are often referred as ROS since most biological significant free radicals are 

oxygen centered (Aprioku, 2013). The most common ROS human body generated includes 

H2O2, superoxide, and hydroxyl radicals. Although these free radicals have deleterious 

effects on the normal human body, they also act as cellular messengers and play an important 

role in maintaining homeostasis (Gemma et al., 2007). At the same time, human body has an 

antioxidant defense system that regulates ROS, including antioxidant enzymes such as 

superoxide dismutase, catalase, glutathione peroxidase, and non-enzyme molecules such as 

selenium, zinc, vitamin E and vitamin C (Uttara et al., 2009).  



www.manaraa.com

 27 

 

  Oxidative stress is described as a condition in which cellular antioxidant defense is 

insufficient to inactivate the ROS. The major consequence of oxidative stress includes 

damage to nuclei, lipids and proteins, which severely compromises cell functions, induces a 

variety of cell responses and leads to cell apoptosis (Dalle-Donne et al., 2006) (Figure 2-6). 

 

Figure 2-6 The role of oxidative stress in PD. 
 

The role of oxidative stress in PD is indicated by the evidence that brain is vulnerable to 

oxidative damage due to high oxygen utilization to produce energy and unsaturated fatty 

acids. Brain is the busiest organ to keep other organs active and under control, and needs 

large amount of energy to maintain active transport of the ions required for neuronal 

excitation and neurotransmission (Nakabeppu et al., 2007). It is estimated that brain uses 

about 20% of body’s total oxygen consumption and 10 moles of ATP per day (Halliwell, 

2006). The brain is rich in polyunsaturated fatty acids especially arachidonic acid and 

docosahexaenoic acid, which are primary lipid peroxidation targets (Gandhi and Abramov, 
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2012). In addition, high iron content and relative low antioxidant enzymes such as catalase, 

superoxide dismutase and glutathione peroxidase, make brain even more susceptible to 

oxidative stress (Bharath et al., 2002). Dopaminergic neurons are particularly susceptible to 

oxidative damage because of the presence of ROS generating enzymes such as tyrosine 

hydroxylase and monoamine oxidase (Hwang, 2013). Tyrosine hydroxylase is a rate limiting 

enzyme in the dopamine synthesis and produces H2O2 as a side product in their activities. In 

addition, dopamine is unstable and produces ROS and reactive quinones through the auto-

oxidation or monoamine oxidase catalyzed oxidation (Khan et al., 2005).  

     Mitochondrial dysfunction is another source of oxidative stress in PD. The main 

function of mitochondria is to provide cellular energy source ATP through the process of 

respiration and oxidative phosphorylation (Hauser and Hastings, 2013). Free radicals such as 

superoxide are normally produced as by-products as electrons are transferred to oxygen in 

the respiration chain. Inhibition of mitochondrial complexes can overthrow the cellular 

antioxidant capacity and dramatically increase ROS production ultimately leading to cell 

death (Van Laar and Berman, 2009). The direct evidence showing mitochondrial dysfunction 

in PD came from the observed defect of mitochondrial complex I activity in SN of PD 

patients (Schapira et al., 1989). Later studies also found reduced activity in complex I, II and 

IV in skeletal muscle cells from PD patients (Bindoff et al., 1991). Research also shows high 

levels of mitochondrial DNA deletions in SN in postmortem tissues of both aging and PD 

patients, supporting the role of mitochondrial dysfunction in PD pathogenesis (Bender et al., 

2006).  

The occurrence of oxidative stress in PD is also supported by postmortem brain analyses 

showing elevated levels of lipid peroxidation, protein carbonyls and nucleic acid oxidation 
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(Dias et al., 2013). Increased lipid peroxidation products such as malondialdehyde and 4-

hydroxynonenal have been found in the SN of PD brains (Gandhi and Abramov, 2012). 

Increased concentrations of both protein carbonyls and 3-nitrotyorsine were also observed in 

aging brains and neurodegenerative disorders including PD (Beal, 2002). Moreover, 

oxidative DNA lesions such as 8-oxoguanine was demonstrated accumulated in nuclear and 

mitochondrial genomes during aging, and increased dramatically in patients with PD 

(Nakabeppu et al., 2007). Oxidant production and oxidative damage were also found in 

neurotoxin-induced PD model. For example, the neurotoxin MPTP can induce 

neurodegeneration by entering astrocytes and converting to the active metabolite MPP+, 

which inhibits complex I of the mitochondrial respiratory chain, and increases ROS 

production. The study has shown that the ROS produced by MPTP is triggered not only by 

complex I inhibition but also by the auto-oxidation of dopamine resulting from MPP+-

induced massive release of vesicular dopamine (Bove and Perier, 2012). Neurotoxin 6-

OHDA-induced PD model also supports the link between oxidative stress and 

neurodegeneration in PD. 6-hydroxydopamine is a naturally occurring endogenous product 

of dopamine synthesis that has been extensively used to model dopaminergic degeneration in 

both in vitro and in vivo studies (Bove et al., 2005). The deleterious effect of 6-OHDA is due 

to the oxidative stress triggered by the production of ROS after the auto-oxidation of 6-

OHDA. 6-hydroxydopamine-induced oxidative damage includes DNA damage, increased 

lipid peroxidation and protein carbonyls. 

2.   Neuroinflammation in PD 
Neuroinflammation is also considered as a major component in the pathogenesis of PD. 

Inflammation is a beneficial process to protect against pathogens and repair tissue damage. 
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However, it can also be detrimental when the helpful response is not controlled leading to the 

destruction of normal tissue and chronic inflammation (Hsieh and Yang, 2013).  

Recent epidemiological studies have suggested the neuroinflammatory processes in the 

development of PD. A prospective study was conducted on 136197 participants to investigate 

the association between use of nonsteroidal anti-inflammatory drugs and the risk of PD (Gao 

et al., 2011). The result showed that users of ibuprofen had a significantly lower risk of PD 

than non-users after the data was adjusted for age, smoking and caffeine and other covariates. 

Another nested case control study including 84 incident cases and 165 matched controls 

examined whether plasma concentrations of inflammatory biomarkers assessed before PD 

diagnosis were predictive for future risk of PD (Chen et al., 2008). Results show that higher 

levels of interleukin-6 (IL-6) but not C-reactive protein, fibrinogen and TNFα receptor were 

associated with a greater risk of PD, although the small sample size in the study limited the 

statistical power in the analysis. Later studies also confirm the elevated circulating levels of 

IL- 6 in PD patients (Scalzo et al., 2010; Koziorowski et al., 2012), indicating the possible 

involvement of inflammation in the PD pathogenesis. Other studies have observed the 

increased levels of cytokines such as TNFα, IL-1B, IL-2, IL-4, IL-10, interferon-ɣ in the 

serum or plasma of PD patients (Katsarou et al., 2007; Brodacki et al., 2008; Rocha et al., 

2015).  

Both the innate and adaptive immune responses have been suggested to play important 

roles in the pathophysiology of PD (Hunot and Hirsch, 2003; Stone et al., 2009). The innate 

immunity plays an important role in initiating inflammation whereas adaptive immunity is 

induced by the innate immunity, which is specific, targeted and highly potent against the 

antigens (Kannarkat et al., 2013). The involvement of the innate immunity in the 
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development of PD is demonstrated by the presence of activated microglia in the SN of 

patients with PD or neurotoxin-induced animal models (Hirsch et al., 2012). A postmortem 

study shows the number of activated microglia were significantly higher in SN, putamen, 

hippocampus,	  transentorhinal cortex, cingulate cortex and temporal cortex of PD patients 

compared to normal control (Imamura et al., 2003). Positron emission tomography (PET) 

studies demonstrate the widespread microglia activation in early PD patients, supporting the 

involvement of intrinsic microglia in the progressive degeneration process of PD (Ouchi et 

al., 2005; Gerhard et al., 2006). Studies with animal models also demonstrate the presence of 

microglia activation in neurotoxin-induced PD. 1-methyl-4-phenyl-1,2,3,6- 

tetrahydropyridine was found to induce microglial activation by increasing cell number, 

changing cell morphology in both SN and striatum of mice (Lull and Block, 2010). 6-

hdyroxydopamine was found to activate microglia through a process called reactive 

microgliosis, which leads to exacerbation of dopamine neuron neurotoxicity (Peterson and 

Flood, 2012). 

Microglia are the resident macrophages of the central nervous system playing an 

important role in sustaining brain homeostasis and performing immune surveillance (More et 

al., 2013). In normal brain, resting microglia continuously examine their environment in the 

surrounding tissues by extending and contracting their cellular protrusion (Peterson and 

Flood, 2012).  

However, various environmental challenges such as aggregated α-synuclein or 

neuromelanin released from damaged dopaminergic neurons can cause microglia activation, 

leading to a series of changes such as shape and increased proliferation. In addition, activated 

microglia can migrate to the lesion region and secrete cytotoxic substances such as pro-
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inflammatory mediators, nitric oxide and superoxide radicals, creating an environment that 

can initiate and amplify the neuron damage (Figure 2-7). In addition, Astrocytes can also 

undergo a state of gliosis in response to neuronal injury or toxic insults and release cytokines 

and chemokines that lead to neurodegeneration. (Rappold and Tieu, 2010).  

 

Figure 2-7 The involvement of the innate immune responses in PD. Part of the figure 
made using the template from Motifolio drawing toolkits (www.motifolio.com). 

 
Innate immune activation may also affect the normal barrier function of cerebral 

endothelial cells and lead to the infiltration of peripheral leukocytes and adaptive immune 

cells (Kannarkat et al., 2013). Both CD4+ and CD8+ T cells were discovered within the SN 

of patients with PD and MPTP intoxicated mice, indicating the role of the adaptive immunity 

in the pathogenesis of PD (Brochard et al., 2009; Stone et al., 2009). Among those T cells, 

CD8+ T cells can induce direct neurotoxicity by lysis of targeted cells through the release of 

granzymes or perforins, or kill cells by engagement of cell death receptors via cytokines such 
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as TNFα. CD4+ T cells can promote the activation and phagocytic function of microphages 

or induce B cells to produce high affinity antibodies leading to antibody dependent 

cytotoxicity (German et al., 2011; Kannarkat et al., 2013; More et al., 2013).  

Recent studies demonstrate the interaction between neuroinflammation and oxidative 

stress in the pathogenesis of PD (Mosley et al., 2006; Tufekci et al., 2012). For example, 

glial cells can release diverse inflammatory mediators in response to oxidative stress 

(Chiurchiu and Maccarrone, 2011; Hsieh and Yang, 2013). On the other hand, enzymes like 

NADPH or cytokines like IL-6, TNFα produced by activated glial cells have the potential to 

initiate or exacerbate the oxidative damage (Stone et al., 2009; Dias et al., 2013; Blesa et al., 

2015). Reactive oxygen species can also act as a key signaling molecule to trigger 

inflammatory responses in the central nervous system through the activation of the redox 

sensitive transcription factors such as nuclear factor kB (Hsieh and Yang, 2013).  

3.   Iron overload in PD 

I.  Systemic iron homeostasis 
Iron is an essential micronutrient for all organisms including human. A healthy male 

individual contains about 3.5g total body iron, approximate 65% of which is distributed 

within red blood cell hemoglobin, about 10% of which is in muscle fibers myoglobin and 

other tissues as enzyme and cytochromes, the remaining of which is stored in the liver, 

macrophages and bone marrow (Munoz et al., 2009). Iron possesses vital physiological 

functions. It is an important part of hemoglobin found in circulating red blood cells and 

serves as oxygen transporter. It is also a component of other heme containing proteins such 

as cytochrome P450 and the cytochromes a b and c in the electron transport and involved in 

mitochondrial respiration and ATP synthesis (Levenson and Tassabehji, 2004). In addition, 
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iron is also required for the activity of a variety of critical enzymes such as tyrosine 

hydroxylase, tryptophan hydroxylase, ribonucleotide reductase. Since iron plays an essential 

physiological and biochemical role, iron deficiency can impede behavior and cognitive 

development. Iron deficiency anemia is a common nutrient deficiency disease in the world 

(Zhang et al., 2014). On the other hand, excess iron participates in Fenton reaction to 

produce ROS and induce cytotoxicity affecting multiple organ systems.  

Thus, human body has evolved a tight regulation system to control iron uptake, 

distribution and export. An adult needs 25-30mg of iron daily, about 90% of which is 

acquired from the recycle iron through the degradation of red blood cells, and the remaining 

10% of which is absorbed from the diet to compensate iron loss caused by bleeding, urinary 

excretion, and sloughing of epithelial and mucous cells (Zhang et al., 2014). The normal diet 

contains 15-20 mg of iron, from which the body absorbs 1-2mg/d (Munoz et al., 2009). 

Dietary iron is found in heme (10%) and non-heme (90%) and their absorption occurs in 

duodenum. Dietary ferric iron (Fe3+) is reduced to ferrous iron (Fe2+) by cytochrome b and 

subsequently transported across the duodenum epithelium by divalent metal transporter-1 

(DMT-1). Enterocytes can also absorb heme iron by heme carrier protein-1, and degrade 

heme through the reaction of heme oxygenase to release ferrous iron. Ferrous iron in the 

enterocytes can either be oxidized to its ferric state and stored in ferritin, or released to the 

periphery through the transmembrane protein ferroportin (Fpn). Ferroportin is the current 

only known iron exporter in mammals (Le Gac et al., 2013). It cooperates with a ferroxidase 

such as ceruloplasmin catalyzing the oxidation of ferrous iron to ferric iron, removing iron 

from cells into bloodstream (Musci et al., 2014). Once in the bloodstream, circulating ferric 

iron is bound to transferrin to form holo-transferrin which is imported to cells via receptor 
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mediated endocytosis after binding to the transferrin receptors (TfRs) (MacKenzie et al., 

2008). In healthy adults, transferrin is about 30% saturated with iron and increased 

transferrin saturation levels (>45%) always indicates iron overload disorder such as 

hereditary hemochromatosis (Hower et al., 2009). Mammals have two forms of TfRs 

including TfR1 and TfR2. TfR1 is widely expressed in all types of cells and TfR2 is 

predominantly expressed in hepatocytes (Chen and Paw, 2012). TfR2 doesn’t contain iron 

responsible elements (IREs) on the 3’ untranslated regions and is not regulated by iron 

regulatory proteins (IRPs) (Silvestri et al., 2014). In addition, DMT-1 can also directly 

transport non-transferrin bound iron (NTBI) into cells under conditions such as 

hemochromatosis when serum transferrin is saturated with iron and NTBI accumulates 

(Zhang et al., 2014).  

II.  Cellular iron regulation 
Cytosolic iron can either be stored in ferritin, or utilized by mitochondria for heme and 

iron sulfur cluster synthesis, or exported out of cells by Fpn. Ferritin is the major iron storage 

protein found in cytoplasm, nucleus and mitochondria and responsible for sequestration of 

reactive iron to participate in Fenton reaction (MacKenzie et al., 2008). Two subunits of 

ferritin have been identified including heavy (H) and light (L) chains. The major function of 

H subunits is converting ferrous to ferric iron through ferroxidase activity, whereas the L 

subunits stabilize the ferritin structure and are involved in iron nucleation to induce iron core 

nucleation (Levi et al., 1992; Takaesu et al., 2008). 

Intracellular iron level is regulated at posttranscriptional level by IRE / IRP regulatory 

system (Munoz et al., 2009). There are two forms of IPRs, including IRP1 and IRP2. 

Although they have similar IRE binding affinities and both are regulated by intracellular iron 
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level, their expression levels are different in various cell types. IPR1 are highly expressed in 

the kidneys, livers and brown fat, while IPR2 are highly expressed in the central nervous 

system (Zhang et al., 2014). In addition, they have different regulatory mechanisms with 

IRP1 functioning as a bifunctional protein. In iron rich condition, IPR1 binds an iron sulfur 

cluster to function as a cytosolic aconitase that catalyzes the conversion of citrate to isocitrate 

in the cytosol. However, IRP2 has no aconitase function and is degraded by the proteasome 

system (Zhang et al., 2014). Both IPR1 and IPR2 bind to IRE located on either 3’ or 5’ 

untranslated regions of mRNA and control cellular iron homeostasis. In cellular iron 

deficient condition, IRPs bind to IRE on the 3’ untranslated region mRNAs of TfR1, DMT-1, 

and stabilize the transcription and facilitate the protein synthesis. IRPs can also bind to IRE 

located on the 5’ untranslated region mRNA of ferritin and Fpn, and block the translation of 

the targeted mRNA. Conversely, in cellular iron overload condition, IRPs are unavailable for 

IRE binding, allowing the degradation of TfR1, DMT-1, and translation of ferritin and Fpn.  

III.  Hepcidin-Fpn axis 
Besides iron regulatory proteins, intracellular iron balance might also be accomplished 

by hepcidin, which was discovered in 2000 by Krause et al. and Park et al. (Krause et al., 

2000; Park et al., 2001). Hepcidin is a small peptide that is mainly secreted by hepatocytes as 

a precursor pro-peptide. It undergoes proteolytic processing to convert to a bioactive peptide 

with 25 amino acids (Wang and Pantopoulos, 2011). Hepcidin binds to Fpn and causes the 

internalization and lysosomal degradation of the transporter leading to decreased iron efflux 

(Myhre et al., 2013; Schmidt, 2015). Ferroportin is both the hepcidin receptor and the only 

known cellular iron exporter in vertebrates (Nemeth and Ganz, 2009). By this mechanism, 

hepcidin controls both systemic and intracellular iron levels through regulating the dietary 
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iron absorption from the duodenum, the recycled iron release from macrophages, and the 

stored iron movement from hepatocyte (Nemeth et al., 2004). Chronic overexpression of 

hepcidin leads to iron restricted anemia accompanied with elevated iron storage in 

macrophages and hepatocytes, and limited uptake from dietary sources (Figure 2-8). 

Conversely, hepcidin deficiency can cause increased iron transfer to plasma, causing a severe 

systemic iron overload (Nemeth and Ganz, 2009; Ganz and Nemeth, 2011).  

 

Figure 2-8 The role of hepcidin in systemic iron homeostasis. Figure reproduced from 
(Ganz and Nemeth, 2012). 

 
Recent research also suggests that Fpn can be regulated independently of hepcidin 

(Ward and Kaplan, 2012). For example, it can be regulated by cellular iron content at the 

posttranscriptional level through IRE/IRP system or degraded at the posttranslational level 

due to the absence of ceruloplasmin. Hepcidin is modulated at transcriptional level by 

different stimuli including both negative and positive regulators. It is stimulated by iron 

status and inflammation, and inhibited by iron anemia, hypoxia (Schmidt, 2015). Research 

demonstrates that hepcidin expression is response to both systemic and intracellular iron 
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status through Bone Morphogenetic Protein (BMP)/Small Mothers Against Decapentaplegic 

(SMAD) pathway. Briefly, elevated circulating iron overload or intracellular iron can 

activate BMP or enhance BMP expression, which can bind with BMP receptors and result in 

phosphorylation of cytoplasmic SMAD1/SMAD5/SMAD8. SMAD1/SMAD5/SMAD8 

proteins form complex with common mediator SMAD4 and translocate into the nucleus and 

activate the transcription of hepcidin (Nemeth and Ganz, 2009). Hepcidin expression is also 

induced by inflammatory stimuli such as cytokine IL-6 through the signal transducer and 

activator transcription 3 (STAT-3) pathway. IL6 binds to its receptor and causes 

phosphorylation of STAT-3, which can translocate to the nucleus and interact with hepcidin 

promotor to induce its transcription (Schmidt, 2015). Although hepcidin is predominantly 

expressed in the liver, recent research also demonstrates the wide distribution of hepcidin in 

the brain. One study shows the upregulation of hepcidin mRNA in aging mouse brain, 

especially in cerebral cortex, hippocampus and striatum, resulting in decreased level of Fpn 

associated with iron overload (Wang et al., 2010). Another study shows peripheral iron 

overload can induce increased level of hepcidin and decreased level of Fpn in the SN of rats, 

indicating the significant role of hepcidin in brain iron homeostasis (Sun et al., 2012).  

IV.  Brain iron homeostasis in PD 
Brain particularly needs iron for high metabolic requirements and normal functions since 

it is a cofactor for a group of enzymes involved in neurotransmitter synthesis such as tyrosine 

hydroxylase for dopamine and norepinephrine synthesis, tryptophan hydroxylase for 

serotonin synthesis, monoamine oxidase A and B for dopamine catabolism (Urrutia et al., 

2014). Iron is also essential for normal myelin production and maintenance, and iron 

accumulation is an early event for the development of oligodendrocytes (Todorich et al., 
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2009). It was found that human infants with iron deficiency anemia tested lower in cognitive, 

motor, social-emotional and neurophysiological development than comparison group of 

infants (Lozoff and Georgieff, 2006). On the other hand, excess iron can participate in 

Fenton reaction to generate highly toxic hydroxyl radicals and enhance lipid peroxidation, 

DNA damage and glutathione consumption leading to deleterious effects on brain. Various 

studies have demonstrated an association between iron accumulation and both aging and 

neurodegenerative disorders (Hagemeier et al., 2012).  

Since excessive iron is toxic to the nervous system, brain has a complex system that 

coordinates iron uptake, release, storage and utilization. Once in the blood stream, ferric iron 

binds to the major serum iron carrier protein transferrin, which will cross the blood brain 

barrier via TfR on the brain capillary endothelial cells (BCEC) (Salvador, 2010). The 

subsequent iron release into the brain interstitium is highly controversial but two major 

hypotheses have been proposed based on the presence of DMT-1 or not : (1) receptor 

mediated endocytosis followed by iron release from endosome via DMT-1 and export into 

the brain interstitium through the Fpn; (2) receptor mediated transcytosis followed by direct 

holo-transferrin release into brain interstitium (Yang et al., 2013; Belaidi and Bush, 2015; 

Skjorringe et al., 2015). Except transferrin-TfR dependent iron uptake system, brain iron 

uptake can also be facilitated by transferrin homologues such as lactoferrin (Mills et al., 

2010). Lactoferrin is an iron binding protein involved in host defense against infection and 

inflammation. It accumulates in the brain with aging and neurodegenerative disorders such as 

PD. Both in vitro and in vivo studies have demonstrated it can cross blood brain barrier 

through the receptor mediated transcytosis (Fillebeen et al., 1999; Ji et al., 2006). Under 

physiological conditions, lactoferrin can function as an iron scavenger and chelate free iron 
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from participating in Fenton reaction. However, under pathological conditions, brain iron 

uptake may be increased through lactoferrin mediated transcytosis.  

After entering ventricles or cerebrospinal fluid, iron moves between neurons, astrocytes, 

microglia and oligodendrocytes depending on the need (Ward et al., 2014) (Figure 2-9). 

Neurons can take up iron through transferrin-TfR pathways or DMT-1, store iron mainly as 

neuromelanin and export iron through Fpn mediated efflux (Lee and Andersen, 2010; Mills 

et al., 2010; Rouault, 2013). Neuromelanin is a dark/brown granular pigment produced in 

some dopaminergic neurons in SN. Its exact function is not known but may be involved in 

neuroprotection against oxidative stress through chelating redox active metals including iron, 

copper, and zinc (Gerlach et al., 2003). It is estimated about 50% of neuromelanin are 

saturated with iron with the ferric form in non-neurodegenerative human SN (Zecca et al., 

2001). Astrocytes might take significant amount of iron through DMT-1, store iron in ferritin, 

and export iron through Fpn and ceruloplasmin (Mills et al., 2010; Ward et al., 2014). 

Microglial cells express DMT-1, ferritin and other iron related proteins like amyloid 

precursor protein (APP) in order to help neurons maintain iron homeostasis in the brain 

environment (Oshiro et al., 2011). Oligodendrocytes, which has highest iron concentration 

for myelin synthesis, is reported to import iron through the ferritin heavy chain or via DMT-1, 

and store iron mainly as ferritin and transferrin (Hare et al., 2013; Rouault, 2013; Ward et al., 

2014). In addition, recent research shows oligodendrocytes also regulate iron efflux via Fpn 

and require a ferroxidase hephaestin for oxidation before proper iron release in normal 

central nervous system (Schulz et al., 2011). 
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Figure 2-9 Brain iron homeostasis. Fpn: ferroportin; TfR: transferrin receptor; DMT-
1: divalent metal transporter. Part of the figure made using the template 
from Motifolio drawing toolkits (www.motifolio.com). 

 

V.  Iron overload in PD 
Accumulated evidence has suggested the disruption of iron homeostasis leading to iron 

accumulation in PD. Postmortem studies have demonstrated the increased levels of iron 

deposits in the SN and globus pallidus in parkinsonian brains (Gotz et al., 2004; Rhodes and 

Ritz, 2008). The presence of increased level of total iron in SN of PD patients has also been 

confirmed by magnetic resonance imaging (MRI) and ultrasound studies, and the extent of 

deposits is linked to the severity and the duration of disease (Kaur and Andersen, 2004; 

Weinreb et al., 2013; Ayton and Lei, 2014). In a 3-year-followup study, iron accumulation 

measured by R2* MRI was observed in SN and caudal putamen in PD subjects but not 

controls, suggesting the role of iron in the neuron death (Ulla et al., 2013). The process of 

iron accumulation in PD may involve in various factors (Figure 2-10) including increased 
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iron uptake by DMT-1, TfR and lactoferrin receptor, decreased iron export by Fpn and 

ceruloplasmin, or altered iron storage regulation by ferritin or neuromelanin (Weinreb et al., 

2013; Le, 2014). Decreased ferritin levels was found in SN, caudate putamen, globus pallidus, 

cerebral cortex and cerebellum in postmortem PD brain (Dexter et al., 1990). Decreased 

ferritin with increased iron contents suggests that reactive iron amount may increase in SN of 

PD patients. Neuromelanin was also observed decreased in SNpc of PD patients. A 

postmortem study found that neuromelanin levels were 1.2-1.5 µg/mg in SNpc of PD patients, 

which was less than 50% with respect to the age-matched controls (Zecca et al., 2002). In 

addition, reduced ferroxidase ceruloplasmin activity was observed in PD cerebrospinal fluid 

and serum, which can in turn promote intracellular iron accumulation and affect brain iron 

levels (Boll et al., 1999; Bharucha et al., 2008; Olivieri et al., 2011; Ayton and Lei, 2014). 

The increased iron concentration in SNpc was also observed in neurotoxin MPTP or 6-

OHDA-induced PD models, and elevated brain iron level was suggested to result from either 

increased influx or decreased efflux (Song et al., 2007; Wang et al., 2007; Salazar et al., 

2008; Lv et al., 2011). Recent studies report that the upregulation of DMT-1 and 

downregulation of Fpn expression might be associated with MPTP-induced iron 

accumulation in mice (Salazar et al., 2008; Lv et al., 2011). Decreased Fpn expression and 

increased DMT-1 expression were also reported in 6-OHDA-induced neurotoxicity (Song et 

al., 2007; Wang et al., 2007). Moreover, the effectiveness of a number of iron chelators such 

as deferoxamine (DFO), clioquinol to attenuate neurotoxins-induced animal models of PD 

further confirms the role of iron in the progression of neurodegeneration (Lan and Jiang, 

1997; Kaur et al., 2003).  
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Figure 2-10 Schematic illustration of the role of iron dysregulation in the pathogenesis 
of PD. DMT-1: divalent metal transporter-1; Fpn: ferroportin; NO: nitric oxide; TfR: 
transferrin receptor. 

 

VI.  The interaction between iron overload, oxidative stress and 
neuroinflammation in the pathogenesis of PD 

Accumulated evidence has suggested that iron overload, oxidative stress and 

neuroinflammation may interact with each other and result in self-propagating effects leading 

to or exacerbating the neurodegenerative process (Figure 2-11) Iron overload is thought to 

be related to oxidative stress since the highly toxic hydroxyl radicals are produced (Figure 

2-12) from superoxide and H2O2 through iron dependent Haber-Weiss and Fenton reactions 

(Puntarulo, 2005). On the other hand, intracellular free iron levels can also be elevated by 

oxidative stress through several pathways such as superoxide-induced iron release from 

ferritin, peroxidase-induced iron release from hemeprotein, or nitric oxide and peroxynitrite-

induced iron release from iron sulfur clusters (Soum and Drapier, 2003; Dias et al., 2013). It 

is also suggested that ferrous iron in the dopaminergic neurons can enhance the auto-

oxidation and monoamine oxidase mediated dopamine metabolism contributing to the 

continuous production of ROS (Hermida-Ameijeiras et al., 2004). 
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Figure 2-11 The interaction between iron overload, oxidative stress and 
neuroinflammation. 
 

 

 

Figure 2-12 Fenton reaction and Haber-Weiss reaction. 

 
 Iron accumulation is also involved in mitochondrial dysfunction, which is an important 

source of oxidative stress in PD. Mitochondrion is the place where free radicals are normally 

produced during oxidative phosphorylation as by-products. Inhibition of mitochondrial 

complexes can overthrow the cellular antioxidant capacity and dramatically increase ROS 

production (Van Laar and Berman, 2009). Studies have shown that mitochondrial complexes 

activity and expression are reduced in brain and muscle cells of PD patients (Schapira et al., 

1989; Bindoff et al., 1991; Van Laar and Berman, 2009). Iron overload can decrease 

mitochondrial activity through decreasing antioxidant enzyme glutathione (Harley et al., 

1993; Pardo Andreu et al., 2009; Urrutia et al., 2014). Moreover, superoxide produced by 
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electron leak from respiratory chain can further oxidize iron sulfur clusters and cause release 

of iron contributing to mitochondrial dysfunction and oxidative stress (Liochev and 

Fridovich, 1999; Isaya, 2014; Bresgen and Eckl, 2015). 

The discovery of hepcidin provides a novel insight to explain the interconnected 

relationship between iron accumulation and neuroinflammation. A recent study shows that 

oxidative stress can downregulate hepcidin expression via transcriptional factors 

CCAAT/enhancer-binding protein α and result in iron overload in alcohol fed mice 

(Harrison-Findik et al., 2006). Another study found that H2O2 with low concentrations (0.3 

µM-6 µM) is able to induce hepcidin expression through STAT3 signaling pathway 

(Millonig et al., 2012). Hepcidin is also induced by inflammatory signals such as IL-6 

through JAK-STAT 3 pathway leading to iron accumulation in neurons and glial cells 

(Myhre et al., 2013; Urrutia et al., 2013; Qian et al., 2014). Moreover, Iron accumulation 

may in turn increase the activation of nuclear factor kB and the secretion of pro-

inflammatory cytokines and induce neuroinflammation (Lin et al., 1997; Wessling-Resnick, 

2010). Recent research shows iron accumulation in microglial cells can stimulate microglial 

activation and enhance the release of pro-inflammatory cytokines and free radicals 

(Rathnasamy et al., 2013), creating the snowball effects among oxidative stress, iron 

accumulation and neuroinflammation, subsequently causing neurodegeneration. 

Treatment for PD  

1.   Conventional treatment 
Conventional treatment for PD can significantly improve the motor symptoms but 

unfortunately is not able to slow down the progression of the disease. The most common 
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drugs include dopamine precursor L-dopa, dopamine agonists, catechol-o-methyl-transferase 

inhibitors and other non-dopaminergic agents (Jankovic and Aguilar, 2008). L-dopa is an 

effective dopamine replacement agent and has been widely used in clinics for more than 40 

years (Salat and Tolosa, 2013). It is the most potent drug that improves patients’ life quality, 

and considered as gold standard to relieve PD symptoms. L-dopa is always administered with 

a dopa-decarboxylase inhibitor such as carbidopa, which blocks its peripheral conversion to 

dopamine, thereby minimizing the side effects of circulating dopamine and increasing its 

availability to the brain (Salat and Tolosa, 2013). Although L-dopa is highly effective during 

the early stages of treatment, prolonged treatment is associated with significant complications 

such as motor fluctuations (periods on and off), dyskinesia (involuntary movement), and 

psychiatric problems (Nagatsua and Sawadab, 2009). Dopamine agonists exert their 

functions by directly activating dopamine receptors. They can significantly attenuate 

patients’ symptoms and are considered as either first therapy in early stage of the disease or 

as an adjunct to L-dopa. Unlike L-dopa, they do not require enzymatic conversion to an 

active metabolite, do not depend on the functional capacities of the nigrostriatal neurons 

(Goldenberg, 2008). However, it also has adverse effects including nausea, neuropsychiatric 

effects including hallucinations, impulse control disorders (Fernandez and Chen, 2007). 

Monoamine oxidase B inhibitors are also widely used in treating motor symptoms as both 

monotherapy and an adjunct to L-dopa (Riederer and Laux, 2011). The basis for using it in 

PD is that it enhances striatal dopaminergic activity by inhibiting the metabolism of 

dopamine (Fernandez and Chen, 2007). Research shows that monoamine oxidase B inhibitor 

has weaker symptomatic effects than L-dopa and dopamine agonist, and cannot delay the 

progression of the disease (Macleod et al., 2005; Caslake et al., 2009).  
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2.  Nutritional approaches to prevent PD  
The role of nutrition has gained increasing attention in PD and some components in 

certain food groups have been identified as neuroprotective agents. Phytochemicals are the 

bioactive plant compounds in fruits, vegetables, and grain. A growing body of evidence 

suggests that the high intake of food rich in phytochemicals such as vegetables and fruits was 

inversely associated with PD risk (Gao et al., 2007; Okubo et al., 2012). Evidence from the 

experimental studies suggest phytochemicals can directly scavenge ROS, enhance 

mitochondrial complex I activity, inhibit the production of pro-inflammatory cytokines (Shah 

and Duda, 2015). For example, research shows blueberry or strawberry extracts showed 

favorable neuroprotective effects including increasing dopamine release, relieving oxidative 

stress and suppressing neuroinflammation (Gao et al., 2012).  

B vitamins, especially folate, vitamin B12, and vitamin B6 may correlate with PD 

through regulating homocysteine level (Shen, 2015). Homocysteine is a sulfur containing 

metabolite in methionine cycle and might increase PD risk by exacerbating oxidative stress, 

mitochondrial dysfunction, damaging DNA and depleting energy reserves, and eventually 

inducing apoptosis in dopaminergic neurons(Agim and Cannon, 2015). Since B vitamins are 

cofactors for homocysteine metabolism, high intake B vitamins may exert neuroprotection by 

reducing plasma homocysteine. An experimental study shows mice with folate deficient diet 

exhibit elevated levels of plasma homocysteine, which exacerbates MPTP-induced dopamine 

depletion, neuronal degeneration and motor dysfunction (Duan et al., 2002). In addition, a 

recent meta-analysis study based on 10 eligible studies shows association between higher 

dietary intake of vitamin B6 and a decreased risk of PD (Shen, 2015).  
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Vitamin E is a fat soluble vitamin found in vegetable oils, seeds, nuts and wheat germ. It 

is an efficient scavenger of free radicals by hydrogen atom transfer reaction (Niki, 2014). It is 

the major lipid soluble antioxidant in the body that protects membranes from lipid 

peroxidation by trapping peroxy radicals. Research has suggested the a protective or 

preventative role of vitamin E in PD (Agim and Cannon, 2015). An animal study shows 

repeated intramuscular administration of vitamin E protected against 6-OHDA-induced 

nigrostriatal dopaminergic neurons degeneration (Roghani and Behzadi, 2001). Another 

study shows vitamin E could partially prevent intra-nigral injection of MPP+-induced 

inhibition of dopamine uptake (Barc et al., 2002). In addition, mice with vitamin E 

deficiency were found more sensitive to the dopaminergic neurotoxicity MPTP in SN 

(Adams et al., 1990). A meta-analysis also found that both moderate and high intake of 

vitamin E protected against PD (Etminan et al., 2005).  

3.  The therapeutic role of iron chelator in PD  
Based on the involvement of iron dysregulation in the pathogenesis of PD, iron chelators 

aimed to reduce excess brain iron currently shows great promise and might provide a new 

insight into therapies directed towards prevention or slowing down the disease progression of 

PD (Table. 1). Iron chelators refer to a group of chemicals typically containing oxygen, 

nitrogen or sulfur donor atoms that can chelate with iron (Hatcher et al., 2009). The 

hexadentate DFO, the bidentate deferiprone, and the tridentate chelator deferasirox are three 

most used iron chelators in the clinical studies to treat iron overloading diseases such as 

thalassemia (Flora and Pachauri, 2010). A recent animal study shows that systemic 

administration of these three iron chelators significantly attenuated 6-OHDA- induced loss of 

dopaminergic neurons and striatal dopamine contents in rats (Dexter et al., 2011). Moreover, 
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Clinical trials demonstrate that deferiprone therapy significantly decreased iron content in 

specific brain regions and slightly improved patients’ motor signs with no apparent side 

effects or resolved neutropenia(Kwiatkowski et al., 2012; Devos et al., 2014; Ward et al., 

2015), indicating the potential usage of iron chelation therapy for PD treatment. Clioquinol 

(CQ) is an 8-hydroxyquinoline derivative that chelates copper, iron and zinc, and has been 

investigated in neurodegenerative disorders because of its iron chelating properties (Mounsey 

and Teismann, 2012). Research shows that oral administration of CQ significantly attenuates 

MPTP-induced neurotoxicity by reducing SN iron level and inhibiting oxidative stress (Kaur 

et al., 2003). A recent study shows that CQ rescued Parkinsonism and dementia phenotypes 

of the tau knockout mouse by increasing tyrosine hydroxylase activity, reducing iron level in 

the brain, and increasing brain derived neurotrophic factor levels in the hippocampus (Lei et 

al., 2015).  

Although treatment with iron chelators might slow down the disease process, 

disadvantages associated with iron chelation therapy including their low bioavailability, poor 

blood brain barrier permeability and toxic side effects limited their further investigation in 

clinical settings (Table 2-1). For example, research shows the absorption of DFO in the 

gastrointestinal tract is really low (Flora and Pachauri, 2010). Moreover, blood brain barrier 

was relatively impermeable to DFO (Ward et al., 2012). Large dose of DFO has to be given 

to overcome its low bioavailability and low availably to brain, which may lead to side effects 

including ophthalmic, auditory toxicity, bacterial and fungal infections, alterations in blood 

histology, allergic and skin reaction (Flora and Pachauri, 2010). Toxic side effects associated 

with CQ such as neurological symptoms, spinal cord abnormalities, Vitamin B 12 deficiency 

also hinders its further investigation in clinical studies (Bareggi and Cornelli, 2012). Future 
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studies are needed to develop more potent iron chelators and evaluate the therapeutic 

efficacy, toxicity, bioavailability of iron chelators in PD treatment. 

Table 2-1Neuroprotection of iron chelators  

 

 Neuroprotection in animal 

models or clinical trials 

Blood brain barrier 

permeability 

Toxicity 

Deferoxamine  Protect against 6-OHDA- 

or MPTP-induced 

neurotoxicity in animals 

(Ben-Shachar et al., 1991; 

Lan and Jiang, 1997; 

Dexter et al., 2011). 

 

Limited ability due 

to hydrophilic nature 

(Hanson et al., 2009; 

Liu et al., 2010; 

Ward et al., 2012). 

Ophthalmic and 

auditory toxicity; 

bacterial and 

fungal 

infections; 

alterations in 

blood histology; 

allergic and skin 

reaction (Flora 

and Pachauri, 

2010).  
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Table 2-1 continued 

Deferiprone Protect against 6-OHDA- 

or MPTP-induced 

neurotoxicity in animals 

(Dexter et al., 2011; 

Devos et al., 2014); 

30 mg/kg/day in two doses 

for 6 months was found to 

reduce iron deposits in 

certain brain regions in 

patients and improve 

patients’ motor signs in 

clinical trials (Abbruzzese 

et al., 2011; Kwiatkowski 

et al., 2012; Devos et al., 

2014). 

Good ability due to 

physicochemical 

characteristics 

including low 

molecular weight, 

favorable octanol: 

water partition 

coefficient, neutral 

charge, and 

lipophilicity 

(Habgood et al., 

1999; Abbruzzese et 

al., 2011).  

Arthropathy, 

gastrointestinal 

symptoms, 

headache, and 

moderate zinc 

deficiency; 

neutropenia 

(Flora and 

Pachauri, 2010).  

Deferasirox 

 

 

Protect against 6-OHDA-

induced neurotoxicity in 

animals (Dexter et al., 

2011). 

Limited ability due 

to water insolubility 

and low 

bioavailability 

(Finkenstedt et al., 

2010; Goswami et 

al., 2015) 

Renal disease; 

acute renal 

failure; Fanconi 

syndrome 

(Grange et al., 

2010) 
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Table 2-1 continued 

Clioquinol 

 

 

Protect against MPTP-

induced neurotoxicity in 

animals and rescue 

Parkinsonism and 

dementia phenotypes of 

the tau knockout mouse 

(Kaur et al., 2003; Lei et 

al., 2015). 

Cross blood brain 

barrier due to 

lipophilic 

characteristics (Kaur 

et al., 2003); 

Brain plasma ratio 

was 20%;  7% was 

found in 

cerebrospinal fluid 

(Bareggi and 

Cornelli, 2012).  

Neurotoxicity; 

neurological 

symptoms; 

spinal cord 

abnormalities; 

Vitamin B 12 

deficiency 

(Bareggi and 

Cornelli, 2012). 

EGCG 

 

Protect against MPTP- or 

6-OHDA-induced 

neurotoxicity in animals 

(Choi et al., 2002; Li et 

al., 2006; Bitu Pinto et al., 

2015); 

Green tea consumption (3 

cups/day) for 3 months 

significantly increased 

antioxidant enzymes and 

decreased oxidative 

damage in PD patients 

(Chen et al., 2015). 

 

May accumulate in 

the brain after given 

repeatedly 

(Suganuma et al., 

1998; Mahler et al., 

2013)  

Maybe 

hepatotoxic at 

higher dose 

(Mereles and 

Hunstein, 2011).  
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Recently, natural iron chelators derived from food and plant has attracted increasing 

interest because of their safety, low toxicity and general acceptance. Phytic acid is a natural 

antioxidant by its ability to chelate metal ions such as iron, copper and scavenge hydroxyl 

radicals (Rao et al., 1991). Our previous research shows that phytic acid can protect both 

MPP+- and 6-OHDA-induced apoptosis by attenuating caspase 3 activity and decreasing 

DNA fragmentation in vitro models of PD (Xu et al., 2008; Xu et al., 2011). Although phytic 

acid is considered as a safer alternative to synthetic iron chelators, its inability to cross blood 

brain barrier hinders its further investigation in the animal models of PD and clinical settings.  

4.  The neuroprotective effect of EGCG in PD  
Green tea is a popular beverage in the world endowed with biological and 

pharmacological properties. Green tea consumption has been shown to be useful for 

prevention of many diseases including different types of cancer, cardiovascular disease and 

liver disease (Chacko et al., 2010). Research also suggests green tea consumption is inversely 

correlated with the incidence of neurodegenerative disorders such as PD and Alzheimer’s 

disease, which may explain the lower incidence of neurodegenerative disorders in Asians 

than in people in western countries (Mandel et al., 2008). The major bioactive constituent of 

tea is catechin, which includes epicatechin (EC), epigollocatechin (EGC), epicatechin gallate 

(ECG) and epigallocatechin gallate (EGCG) (Figure 2-13).  
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Figure 2-13 Structure of epicatechin (EC), epigollocatechin (EGC), epicatechin gallate 
(ECG) and epigallocatechin gallate (EGCG). Figure reproduced from (Ravindranath et 
al., 2006). 

 
Among those catechins, EGCG is the most abundant, best studied and possibly most 

potent polyphenol (Bode and Dong, 2009). Research has suggested that beneficial effects of 

EGCG include its antioxidant effects, antiangiogenic and antitumor effect, enhancing weight 

loss, protecting skin from ionizing radiation damage, and neuroprotective effects (Nagle et 

al., 2006). Epigallocatechin gallate is by far the most studied natural iron chelator for the 

treatment of PD. Several epidemiology studies have demonstrated the reduced risk of PD in 

population with tea consumption (Chan et al., 1998; Checkoway et al., 2002; Tan et al., 

2008). Substantial evidence suggests that neuroprotective effect of tea is partially due to its 

most abundant polyphenol EGCG (Levites et al., 2002; Higdon and Frei, 2003). In vitro 

studies have shown that EGCG prevented neuronal cell death caused by neurotoxins such as 

6-OHDA, MPP+ (Levites et al., 2002; Ye et al., 2012). In agreement with in vitro findings, in 

vivo studies have shown that EGCG protected MPTP-induced striatal dopamine depletion 
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and loss of TH positive neurons by inhibiting microglial cell activation and nitric oxide 

synthase (NOS) activity (Choi et al., 2002; Li et al., 2006). A recent study shows EGCG also 

protected 6-OHDA-induced neurotoxicity by reversing striatal oxidative stress and inhibiting 

pro-inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible NOS (Bitu Pinto et al., 

2015). The mechanisms underlying the neuroprotective effect of EGCG includes its chelating 

ability due to the 3,4-dihydroxyl groups and the gallate group in the structure, its regulation 

of antioxidant enzymes superoxide dismutase and catalase and its inhibition of microglia 

activation and TFN α release (Mandel et al., 2005; Mandel et al., 2008). In addition, EGCG 

was shown to prevent apoptosis through regulating pro-survival phosphatidylinositol 3-

kinase (PI3K)/AKT and protein kinase C, inhibiting pro-apoptotic kinase pathways, 

upregulating the expression of anti-apoptotic proteins like Bcl-2 and downregulating pro-

apoptotic molecules such as Bax and Bad (Levites et al., 2002). Epigallocatechin gallate was 

also found to mediate the expression of nuclear factor erythroid 2 p45 (NF-E2) related factor 

(Nrf2), which can further induce detoxifying and antioxidant enzymes such as glutathione 

peroxidase, glutathione S transferase (Na and Surh, 2008). Recent studies also suggest 

EGCG could modulate  mitochondrial functions such as impacting mitochondrial biogenesis, 

bioenergetics control (ATP production and anabolism) (Oliveira et al., 2016). EGCG was 

found to protect mitochondrial function by promoting fusion and suppressing fission and 

autophagy. Moreover, EGCG was also found to upregulate the activities of mitochondrial 

enzymes involved in the maintenance of the tricarboxylic acid cycle (TCA cycle) and 

electron transport chain complexes in aged brain mitochondria (Srividhya et al., 2009).  

The natural origin of EGCG and its ability to cross the blood brain barrier makes it more 

attractive for PD treatment. It is reported that EGCG could be easily absorbed from the 
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digestive tract and widely distributed into various organs, including the brain, which had a 

similar concentration to the level found in the liver, kidney, lung, heart, spleen and pancreas 

(Levites et al., 2001). Although the protective effect of EGCG in PD is extensively 

investigated in preclinical studies, data regarding the beneficial effects in clinical trials are 

rare or non-conclusive (Mahler et al., 2013). Recent study shows that green tea consumption 

(3 cups/day) for 3 months significantly increased antioxidant enzymes including catalase and 

SOD, decreased oxidative damage including lipid peroxidation and protein carbonyls (Chen 

et al., 2015). 

General summary 
In summary, research has demonstrated the central role of iron in the pathogenesis of PD. 

Its potential interaction with other factors such as oxidative stress and neuroinflammation can 

result in a snow ball effect leading to the subsequent neurodegeneration. Based on the 

involvement of iron dysregulation in the pathogenesis of PD, use of iron chelators might be a 

promising therapy for prevention or slowing down the progress of the disease. 

Epigallocatechin gallate is the major polyphenol in green tea and it has gained attention due 

to its antioxidant, iron chelating and anti-inflammatory properties. Research has 

demonstrated the neuroprotection of EGCG in both in vitro and in vivo models of PD. 

However, future studies are needed to understand the mechanisms underlying the 

neuroprotection of EGCG and its therapeutic values in clinical settings.  
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Abstract 
Background: Elevated brain iron levels have been implicated in the pathogenesis of 

Parkinson’s disease (PD). However, the precise mechanism underlying abnormal iron 

accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, 

acts as a key regulator in both systemic and cellular iron homeostasis. Objective: We 

investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA)-induced apoptosis in a 

cell culture model of PD. Methods: We downregulated hepcidin using siRNA interference in 

N27 dopaminergic neuronal cells and compared with control siRNA transfected cells to 

investigate the role of hepcidin in 6-OHDA-induced neurodegeneration. Results: Hepcidin 

knockdown (32.3% P<0.0001) upregulated ferroportin expression and significantly (P<0.05) 

decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA-induced 

caspase-3 activity by 42% (p<0.05) and DNA fragmentation by 29% (p=0.086) and increased 

cell viability by 22% (P<0.05). In addition, hepcidin knockdown significantly attenuated 6-
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OHDA-induced protein carbonyls by 52% (p<0.05) and intracellular iron by 28% (p<0.01), 

indicating the role of hepcidin in oxidative stress. Conclusions: Our results demonstrate that 

hepcidin knockdown protected N27 cells from 6-OHDA-induced apoptosis, and that hepcidin 

plays a major role in reducing cellular iron burden and oxidative damage by possibly 

regulating cellular iron export mediated by ferroportin.  

Key words: Parkinson’s disease, hepcidin, ferroportin iron, 6-OHDA. 

Introduction 
Parkinson’s disease (PD) is an incurable neurodegenerative disease that affects more 

than 1% of people over 65 years old and approximately 4% of the population aged over 80 

years [1]. The prevalence is expected to rise sharply within the next two decades because of 

progressive aging population [2]. Parkinson’s disease is characterized by the progressive loss 

of dopaminergic neurons in the substantia nigra (SN), degeneration of projecting nerve fibers 

in the striatum, and accumulation of intracytoplasmic inclusions, known as Lewy bodies [3]. 

Although the etiology of PD is not clear, both genetic and environmental risk factors 

including exposure to metals and pesticides are considered to be involved in PD [4].  

 Iron, the most abundant trace metal in the brain, is thought to play an important role 

in the pathogenesis of PD. Studies have demonstrated the association between iron 

dysregulation and PD. Increased levels of iron deposits in the SN are observed in postmortem 

studies, as well as in 6-hydroxydopamine (6-OHDA)- and 1-methyl-4 phenyl-1,2,3,6,-

tetrahydropyridine (MPTP)-induced PD animal models [5]. The imaging studies of living PD 

patients also confirmed the presence of accumulation of iron in the SN and linked the extent 

of iron deposits to the severity of disease [6]. Although iron is important in various 
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physiological functions, such as DNA synthesis, mitochondrial respiration and oxygen 

transport [7], free iron is potentially toxic as it is involved in the generation of hydroxyl 

radicals, which can react with lipid, protein and DNA, leading to subsequent neuronal 

damage and death. Moreover, free iron in dopaminergic neurons can accelerate toxic alpha-

synuclein fibril formation, leading to neuronal dysfunction [8].  

 Because of potential toxicity of iron, iron homeostasis is tightly regulated by a 

complex system that coordinates iron uptake, release, storage, and utilization. For example, 

iron is delivered to tissues by circulating transferrin, and excess iron in the cell is stored in 

the cytosolic ferritin [9]. Hepcidin is a small peptide that mainly secreted by hepatocytes in 

response to inflammation, iron overload and oxidative stress [10, 11]. It controls systemic 

iron levels by regulating iron absorption from the intestine, the release of iron from degraded 

hemoglobin from macrophages, and stored iron from hepatocyte [12]. Hepcidin is also 

considered as a master regulator in the management of cellular iron homeostasis by binding 

to iron exporter protein ferroportin in cell membranes and causing its subsequent 

internalization and lysosomal degradation [3]. Although hepcidin is predominantly expressed 

in the liver, recent research demonstrates that hepcidin is also widely distributed in the 

central nervous system. One study showed that hepcidin mRNA level is increased with aging 

in mouse brain, particularly in the cerebral cortex, hippocampus, and striatum, which leads to 

decreased level of ferroportin (Fpn) and the associated iron accumulation in aging brain [13]. 

Another study showed that peripheral iron overload induces hepcidin and decreased level of 

Fpn in the SN of rats, suggesting the critical role of hepcidin plays in brain iron disturbance 

[14]. The objective of this study was to determine the role of hepcidin in 6-OHDA-induced 

cell death by knocking down hepcidin expression in N27 dopaminergic cell model of PD. 
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Materials and methods 
 Chemicals 

 The immortalized rat mesencephalic dopaminergic neuronal cell line (1RB3AN27, 

generally referred to as N27) was a kind gift from Dr. Kedar N. Prasad, University of 

Colorado Health Sciences Center (Denver, CO). RPMI-1640 medium, fetal bovine serum, L-

glutamine, penicillin, and streptomycin were obtained from Invitrogen (Carlsbad, CA). 

Calcein-AM, ascorbic acid, mouse β-actin antibody, 6-OHDA, ferrous sulfate, ascorbic acid 

were purchased from Sigma Aldrich (St. Louis, MO). The Amaxa Nucleofector kit was 

purchased from Lonza (Allendale, NJ). The Absolutely RNA Miniprep kit and High Capacity 

cDNA Archive kit were purchased from Stratagene (La Jolla, CA) and Life Technologies 

(Grand Island, NY), respectively. The hepcidin specific siRNA and scrambled siRNA were 

purchased from Integrated DNA Technologies (Coralville, IA). Substrate for caspase-3, 

Acetyl-Asp-Glu-Val-Asp-AFC was obtained from MP Biomedicals (Solon, OH). The Cell 

Death Detection ELISA Plus kit was purchased from Roche Diagnostics (Indianapolis, IN). 

Protein Carbonyls Colorimetric Assay kit was purchased from Cayman Chemical (Ann 

Arbor, MI). The rabbit polyclonal antibody for Fpn was purchased from Alpha Diagnostic 

(San Antonio, TX). Alexa Fluor 680 conjugated anti-mouse IgG and IRdye 800 conjugated 

anti-rabbit IgG were purchased from Invitrogen (Carlsbad, CA) and Rockland Inc. 

(Gilbertsville, PA), respectively. All solutions were prepared fresh prior to each assay.  

Cell culture 

N27 cells were grown in RPMI-1640 medium containing 10% fetal bovine serum, 2 

mmol/l L-glutamine, 50 units penicillin, and 50 µg/ml streptomycin and maintained at 37oC 
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in a humidified atmosphere containing 5% CO2, as described in our previous publication 

[15]. 

Transient transfections and treatment paradigm 

N27 cells were transfected with hepcidin specific siRNA (hepcidin siRNA) or scrambled 

siRNA (control siRNA) using the Amaxa Nucelofector kit, following the manufacturer’s 

instructions. Briefly, 3x106 cells were resuspended in 100 µL of the Nucleofector solution, 

along with 1.5 µg of hepcidin siRNA or control siRNA, and subsequently subjected to 

electroporation using the nucleofector program no. A23. After 72 h of initial transfection, 

cells were harvested and hepcidin mRNA was analyzed using quantitative real-time RT-PCR 

to confirm the knockdown efficiency. To evaluate the effect of hepcidin knockdown on 6-

OHDA-induced neurotoxicity, both control siRNA and hepcidin siRNA transfected cells 

were plated for 48 h and treated with or without 100 µM 6-OHDA for 6 h. Cells were 

collected at the end of each treatment for the following experiments.  

Quantitative real-time RT-PCR 

Total RNA was isolated and converted to cDNA using the Absolutely RNA Miniprep kit 

and High Capacity cDNA Archive kit, respectively. Real-time PCR was performed using a 

Brilliant SYBR Green QPCR Master Mix kit and the Mx3000P QPCR system, as described 

in our previous publication [16]. The 18s rRNA was used as an internal control for 

quantifying RNA with the primer set purchased from SABiosciences (Valencia, CA). The 

reaction mixture included 2 µl of cDNA, 12.5 µl of 2X master mix, and 0.2 µmol/L each 

primer. Cycling conditions contained an initial denaturation at 95oC for 10 min, followed by 

40 cycles of denaturation at 95oC for 15 s and annealing at 60oC for 10 min. Fluorescence 

was detected during the annealing/extension step of each cycle. Dissociation curves were run 
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to verify the singularity of the PCR products. The data were analyzed using the comparative 

threshold cycle method as described in our previous publication [16]. 

Western blot assays for ferroportin 

Cell lysates were prepared using a modified radio immunoprecipitation assay (RIPA) 

buffer as described previously [17]. Equal amounts of protein were loaded for each sample 

and separated on 12% SDS-PAGE gels. After separation, the proteins were transferred onto a 

nitrocellulose membrane and were incubated with the rabbit polyclonal antibody directed 

against Fpn (1:1000) and developed with IR-dye 800 anti-rabbit secondary antibody 

(1:5000). β-actin was used as the loading control. Membranes were visualized on an Odyssey 

Infrared Imaging system (LICOR, Lincoln, NE). 

Calcein quenching to measure intracellular iron levels 

The intracellular iron levels were determined by a calcein fluorescence quenching 

method modified from a previous study [18]. Calcein-AM is a membrane permeable, non-

fluorescent molecule that becomes fluorescent by intracellular esterases. It is quenched 

rapidly by Fe2+ or Fe3+ and is a good indicator of the ‘labile iron pool’ [18]. After the 

treatment, cells were incubated with calcein-AM in HEPES-buffered saline (HBS) for 30 min 

at 37oC. The excess calcein on the cell surface was washed off three times with HBS, and 

fluorescence was recorded using a Synergy II microplate reader (BioTek Instruments, 

Winooski, VT) at 485 nm excitation and 530 nm emission. Change in fluorescence intensity 

(with and without treatment after normalizing to protein concentrations) reflected the 

intracellular iron levels. Calcein fluorescence pictures were obtained with FLoid ® Cell 

Imaging Station (Life technologies).  

Cell viability assays 
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Cell viability was measured using MTT assay as described earlier [15]. After each 

treatment, cells were incubated with serum-free RPMI medium containing 0.25 mg/mL MTT 

solution for 3 h at 37°C, followed by adding isopropanol–HCl (200 µL) solution to dissolve 

intracellular purple formazan. The absorbance was read at 570 nm with a reference 

wavelength of 630 nm using a microplate reader (Molecular Devices, Sunnyvale, CA).  

 Caspase-3 activity assays 

Caspase-3 activity was measured as described previously [19]. After treatment, the cell 

pellet after centrifugation was lysed with Tris buffer (50 mol/L Tris-HCL, 1 mmol/L EDTA, 

and 10 mmol/L EGTA at pH=7.4) containing 10 µmol/L digitonin for 20 min at 37oC. 

Lysates were subjected to a quick centrifugation at 14,000 x g and then incubated with a 

specific fluorescent substrate (Ac-DEVD-AFC, 50 µmol/L) for 1 h at 37oC. The caspase-3 

activity was measured with excitation at 400 nm and emission at 505 nm using a 

fluorescence microplate reader. The caspase-3 activity was expressed as fluorescent units/mg 

protein. 

DNA fragmentation assays 

DNA fragmentation assays were performed using the Cell Death Detection ELISA Plus 

kit as described previously [17]. After treatment, cell pellet was incubated with lysis buffer 

provided in the kit. The lysates were then centrifuged and the supernatant was incubated for 2 

h with the mixture of HRP-conjugated antibody cocktail that recognizes histones, single- and 

double-stranded DNA. After washing away the unbound components, measurements were 

made at 490 nm and 405 nm using a fluorescence microplate reader. DNA fragmentation was 

expressed as absorbance units/mg protein. 

Protein carbonyl assays 
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The oxidative damage to proteins was determined by measuring the protein carbonyl 

residues using DNPH (2,4-dinitrophenylhydrazine) according to manufacturer’s protocol. 

DNPH reacts with protein carbonyls to produce the corresponding hydrazones, which was 

measured spectrophotometrically at the wavelength of 360 nm. The carbonyl content was 

determined from the differences in absorbance between DNPH-reacted samples and non-

reacted HCL samples, and then standardized against the protein concentrations in the 

samples. 

Statistical analysis 

Data were analysed using the GraphPad Prism 5.0 (GraphPad Software, Inc. La Jolla, 

CA). All values were expressed as mean ± SEM. Student t test was used to compare the 

differences between groups. The values for two (control and hepcidin) siRNA transfected 

cells with 6-OHDA treatments were normalized to their respective controls (without 6-

OHDA treatment) before statistical analysis. All the mean differences were considered 

significant at p<0.05. 

Results 
Downregulation of hepcidin 

To address the role of hepcidin in regulation of 6-OHDA-induced neurotoxicity, we first 

utilized RNA interference (RNAi) technique to downregulate hepcidin levels in N27 

dopaminergic cells. As shown in Figure 3-1A, hepcidin mRNA levels were significantly 

downregulated (32.3% P<0.0001) in hepcidin siRNA transfected cells compared with control 

siRNA transfected cells. Since hepcidin regulates Fpn by triggering its degradation, we 

further determined whether downregulation of hepcidin leads to an increased Fpn protein 
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expression (Figure 3-1B). Compared to the control siRNA transfected cells, the Fpn protein 

levels were elevated in hepcidin siRNA transfected cells, which confirmed a negative 

relationship between hepcidin and Fpn expression in dopaminergic cells. We also measured 

intracellular iron, which was indirectly measured by calcein fluorescence quenching, to 

ascertain whether decreased expression of hepcidin and increased expression of Fpn reduced 

intracellular iron levels. To confirm calcein fluorescence quenching method by intracellular 

iron, we incubated the cells with or without 1 mM exogenous iron (ferrous sulfate in ascorbic 

acid solution, 1:44 molar ratio, pH 6.0) for 30 min and then examined the calcein quenching 

by fluorescence microscopy. As shown in Figure 3-1D, supplementation of 1 mM ferrous 

sulfate effectively decreased calcein fluorescence. As shown in Figure 3-1C, hepcidin 

knockdown significantly decreased intracellular iron by 25% (P<0.05). 

Hepcidin knockdown protects N27 cells from 6-OHDA-induced cytotoxicity 

All the values presented in Figure 3-2 were presented as percentage of respective 

controls, control and hepcidin siRNAs not treated with 6-OHDA.We evaluated the effect of 

hepcidin knockdown on 6-OHDA mediated cell death using MTT assay (Figure 3-1A). 

Hepcidin knockdown significantly lessened the toxic effect of 6-OHDA by increasing cell 

viability by 22% (P<0.05). When apoptosis was measured, hepcidin knockdown reduced 6-

OHDA-induced caspase-3 activity significantly (Figure 3-1B; 42%; P<0.05). DNA 

fragmentation was also reduced, but it was only marginally significant (Figure 3-1C; p= 

0.086). Together, these results demonstrate that hepcidin knockdown protects against 6-

OHDA-induced cell apoptosis. 

Hepcidin downregulation reduces 6-OHDA-induced protein oxidative damage and 

intracellular iron 
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As shown in Table 3-1, hepcidin knockdown decreased 6-OHDA-induced protein 

carbonyls by 52% (P<0.05) and intracellular iron by 28% (p<0.01). These results show that 

hepcidin knockdown might protect against 6-OHDA-induced neurotoxicity through 

attenuating oxidative stress by mediating intracellular free iron.  

Discussion 
Iron is an essential nutrient and involves in many functions, such as acting as a cofactor 

for key enzymes involved in neurotransmitter biosynthesis [20] . On the other hand, excess 

free iron can cause significant oxidative stress by involving in the production of hydroxyl 

radical formation, glutathione consumption, protein aggregation, lipid peroxidation, and 

nucleic acid modification [21, 22]. Human body has differential expression of iron regulatory 

proteins to tightly regulate free iron levels to minimize its amount iron available to 

participate in free radical formation. Among those proteins, hepcidin is considered as a 

principal regulator because of its function to inhibit cellular efflux of iron by binding to Fpn 

at the cell surface and inducing its subsequent degradation [23].  

Recent studies have suggested a critical role for hepcidin in a variety of disorders, 

including anemia of inflammation, chronic kidney disease, and familial hemochromatosis 

[23-25]. However, the participation of hepcidin in neurodegenerative disorders is very 

limited. In our earlier study in cell culture [26], 6-OHDA increased the expression hepcidin 

and decreased the expression of Fpn, which made us to design this current study to 

investigate the effect hepcidin with knockdown experiments. We used a N27 dopaminergic 

neuronal cell model to detect hepcidin and Fpn expression, since N27 cell line possesses all 

physiological and biochemical properties of dopaminergic neurons [27]. Our results show 
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that both hepcidin and Fpn are expressed in N27 cells, and that knockdown of hepcidin 

remarkably increased Fpn expression and reduced intracellular iron levels as measured by 

calcein quenching. These results are consistent with previous studies, which demonstrate that 

hepcidin is widely expressed in murine brain and might play a key role in regulating iron 

levels in the brain by down-regulating Fpn expression [13, 28, 29].  

Our study also shows that regulation of brain iron efflux by hepcidin may play a 

protective role in 6-OHDA-induced neurotoxicity. Hepcidin knockdown and subsequent 

upregulation of Fpn protein significantly attenuated the protein oxidative damage induced by 

6-OHDA, ultimately leading to a reduction in cell apoptosis, as evidenced by decreased 

caspase-3 activation and marginally decreasing DNA fragmentation. Increasing caspase-3 

activity and DNA fragmentation respectively by more than 2- and 1.5-fold in the control 

siRNA cells but only showing a small increase in hepcidin siRNA cells with 6-OHDA 

treatment clearly shows the protection with hepcidin downregulation. 6-hydroxydopamine is 

a hydroxylated analogue of the neurotransmitter dopamine and represents a classic 

neurotoxin used for the initiation of the PD neurodegeneration both in vitro and in vivo [30]. 

Studies have shown abnormal iron accumulation in 6-OHDA-induced PD models, and 6-

OHDA-induced neurotoxicity may result from free iron and the ensuing production of free 

radical species [31]. However, the precise mechanism underlying abnormal iron 

accumulation in 6-OHDA-induced neurotoxicity is not very clear. Song et al. [32] 

demonstrated that upregulation of iron regulatory protein 1 (IRP1) might be responsible for a 

decreased expression of Fpn and increased cellular iron accumulation. Another study 

reported that divalent metal transporter-1(DMT-1)+IRE upregulation is involved in 6-

OHDA-induced iron accumulation and aggravated oxidative injury [33]. Our study provides 
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direct evidence for the first time that hepcidin-ferroportin axis at least partially accounts for 

iron accumulation in 6-OHDA-induced neurodegeneration. Hepcidin knockdown resulted in 

upregulation of Fpn, which may enhance iron release and alleviate iron accumulation in 

dopaminergic neurons, and eventually protected neurons from 6-OHDA-induced apoptosis. 

Our data with calcein quenching support this relationship. In addition to its role in iron 

homeostasis, hepcidin is also recognized as a principal mediator in inflammation [34, 35], 

which is also directly linked to the pathogenesis of PD [36, 37]. Thus, further study is needed 

to study the linkage between hepcidin expression, iron status and neuroinflammation in PD.  

Conclusions 
In conclusion, our study demonstrates that hepcidin plays an important role in iron 

accumulation, thus causing oxidative stress and associated neurotoxicity. Hence, the 

approaches that can reduce hepcidin and increase Fpn expression might be effective 

strategies in preventing the progression of PD.  
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Tables and figures 
Table 3-1 The role of hepcidin knockdown on 6-OHDA-induced oxidative damage 
measured by protein carbonyls (n=4) and intracellular iron measured by calcein 
quenching method (n=6). 

 
 Protein Carbonyls  

(nmol/mg protein) 
Calcein Quenching  
(fluorescent units/mg protein) 

Control siRNA 18.5+2.9 112.4+4.8 
Hepcidin siRNA 8.9+1.1* 80.8+6.2** 
 

Values are mean ± SEM; *P<0.05; **P<0.01. Differences between two groups were based 
on student’s t-test; control siRNA: scrambled small interfering RNA; hepcidin siRNA: 
hepcidin small interfering RNA. 
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Figure 3-1 Effect of hepcidin knockdown on hepcidin mRNA levels measured by 
quantitative real-time RT-PCR (A, n=7-8), ferroportin protein levels (normalized to β-
actin) measured by Western blot (B) and intracellular iron measured by a calcein 
quenching method (C, n=6) in N27 cells. Representative calcein fluorescence images 
with and without incubation of 1 mM ferrous sulfate for 30 min are shown (D). Values 

Control siRNA    Hepcidin siRNA            

Β-‐actin 

Fpn	   

Control	  (no	  iron	  added)	   Ferrous	  sulfate	   

Calcein	  Fluorescence 
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are mean ± SEM. Differences between two groups was based on student’s t-test; 
*P<0.05, **P<0.0001. Control siRNA: scrambled small interfering RNA; Hepcidin 
siRNA: hepcidin small interfering RNA; Fpn: ferroportin. 
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Figure 3-2 The role of hepcidin knockdown on 6-OHDA-induced cytotoxicity measured 
by MTT (A, n=6), caspase-3 activity (B, n=4-5) and DNA fragmentation (C, n=4) in N27 
cells; Cells were treated with 100 µM 6-OHDA for 6 h and the values (mean ± SEM) are 
normalized to their respective controls without 6-OHDA treatment; *P<0.05, difference 
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between two groups was based on student’s t-test; control siRNA: scrambled small 
interfering RNA; hepcidin siRNA: hepcidin small interfering RNA. 
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Abstract  
Several factors including oxidative stress, iron dysregulation, and inflammation have 

been implicated in the pathogenesis of Parkinson’s disease (PD). Considering the entwined 

relationship among these factors, Epigallocatechin gallate (EGCG) may be a good candidate 

due to its antioxidant, iron chelating and anti-inflammatory properties. The objective of this 

study is to determine whether EGCG protects immortalized rat mesencephalic cells from 

hydrogen peroxide (H2O2)- and tumor necrosis factor alpha (TNFα)-induced neurotoxicity. 

The neuroprotective effects of EGCG were assessed by cell viability assay, caspase-3 activity, 

intracellular reactive oxygen species (ROS) generation, and iron related protein expressions. 

Our results show that caspase-3 activity was increased to 2.8 fold (P<0.001) and 1.5 fold 

(P<0.01) with H2O2 and TNFα treatment; However, EGCG pretreatment significantly 

decreased the caspase activity by 50.2% (P<0.001) and 30.1% (P<0.05). Similarly, cell 

viability was reduced to 69.2% (P<0.01) and 89% (P<0.01) by H2O2 and TNFα, which is 
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partially blocked by EGCG pretreatment. Epigallocatechin gallate pretreatment also 

significantly (P<0.001) protected against H2O2-induced ROS in a time dependent manner. In 

addition, both H2O2 and TNFα significantly upregulate hepcidin expression and marginally 

reduce ferroportin (Fpn) expression. However, iron alone treatment had a more significant 

effect on Fpn than hepcidin. All these effects were partially reversed by EGCG, indicating its 

ability of altering iron efflux. Collectively, our results show that EGCG protects against both 

TNFα- and H2O2-induced neuronal apoptosis. The observed neuroprotection may be through 

the inhibition of oxidative stress and inflammation which is possibly mediated by iron 

regulated proteins hepcidin and Fpn.  

Key words: Parkinson’s disease EGCG MPTP  

Introduction 
Parkinson’s disease (PD) is the second most common neurodegenerative disorder 

affecting about 1.5% global population over 65 years old [1]. It is characterized by the 

progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta 

(SNpc), which manifests as motor dysfunction including tremor, bradykinesia, postural 

instability and rigidity [2]. Currently, there are no available therapies that can effectively 

slow down or reverse the disease progression and there is a great need to understand the 

pathogenesis and develop the new neuroprotective agents for the treatment or prevention of 

PD.  

Although the etiology of PD has to be established, it is widely accepted that many 

factors including oxidative stress, inflammation, iron overloading may be the underlying 

mechanisms that lead to neurodegeneration and development of PD. Oxidative stress is a 
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condition caused by the imbalance in the production of reactive oxygen species (ROS) and 

the biological system’s antioxidant capacity to detoxify those species and repair the resulting 

damage [3]. The major consequence of oxidative stress includes damage to nuclei, lipids and 

proteins, which severely affects cellular function and may induce cell death [4]. Oxidative 

stress has been thought to be involved in both idiopathic and genetic cases of PD, and 

oxidative damage such as increased levels of oxidized lipids, proteins, and DNA, and 

decreased levels of reduced glutathione have been observed in the substantia nigra (SN) of 

PD patients [5]. A number of sources and mechanisms responsible for the generation of ROS 

including the metabolism of dopamine, mitochondrion dysfunction and aging have also been 

implicated in PD pathogenesis [6]. Neuroinflammation is considered as another major 

component in the pathogenesis of PD, which is demonstrated by the presence of activated 

microglia in the SN of PD patients or neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-

tertrahydropyridine (MPTP)-induced animal models [7, 8]. Microglia are the resident 

macrophages of the central nervous system playing an essential role in the immune response 

[9]. However, over-activated or chronically activated microglia are a significant source of 

oxidative stress and damage the neighboring neurons through the secretion of cytotoxic 

substances such as nitric oxide or superoxide radicals [10]. In addition, microglia produced 

pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα), can mediate direct 

apoptosis in neurons through the activation of caspase 8 [11].  

The role of iron has gained increasing attention in PD due to its complicated interplay 

with other pathological factors including oxidative stress and neuroinflammation. Although 

iron possesses essential physiological roles in all organisms, excess iron can participate in 

Fenton reaction to generate highly reactive hydroxyl radicals leading to lipid peroxidation, 
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DNA and protein damage. Moreover, iron accumulation might stimulate the activation of glia 

cells leading to the release of neurotoxic substances such as TNFα, IL-6, nitric oxide 

contributing to the progression of PD [12]. Accumulated evidence has demonstrated that iron 

accumulation is a hallmark of several neurodegenerative disorders including PD [12]. It is 

demonstrated that that iron concentration is significantly elevated in SN in PD patients as 

well as neurotoxins, such as 6-hydroxydopamine (6-OHDA)-, 1-methyl-4-phenyl-1,2,3,6- 

tertahydropyridine (MPTP)-, and rotenone-induced PD model in animals [13, 14]. The iron 

accumulation in PD may be due to altered expressions of iron related proteins such as 

increased iron importer, divalent metal transporter-1 (DMT-1), transferrin receptor (TFR), 

decreased iron exporter ferroportin (Fpn) and ceruloplasmin, or altered iron storage protein 

ferritin or neuromelanin [15]. Hepcidin is a small peptide that controls intracellular iron 

balance by binding to the sole cellular iron exporter Fpn and inducing its degradation [16]. 

Recent studies have shown that hepcidin and Fpn are widely expressed in the central nervous 

system and dysregulated hepcidin-Fpn axis might account for iron accumulation in 

neurodegenerative disorders [17, 18] 

Based on the multifactorial pathogenesis of PD, natural compounds targeted to affect 

multiple functions are ideal candidates for the prevention or treatment of the disease. 

Epigallocatechin gallate (EGCG) is the major polyphenol in green tea and it gained attention 

due to its antioxidant, iron chelating and anti-inflammatory properties [19]. Both in vitro and 

in vivo studies have shown that EGCG prevented neurotoxin 1-methyl-4-phenylpyridinium 

(MPP+)-induced neuronal cell death and MPTP-induced striatal dopamine depletion and loss 

TH positive neurons, respectively [20-22]. In agreement with in these findings, our recent in 

vitro study also show that EGCG protected against 6-OHDA-induced neurotoxicity by 
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regulating genes and proteins involved in brain iron homeostasis [23]. The objective of this 

study is to further investigate the antioxidant and anti-inflammatory effects of EGCG in a cell 

culture model of PD. Our hypothesis was that EGCG exerts neuroprotective action against 

hydrogen peroxide (H2O2)- and TNFα-induced neurotoxicity through regulating iron related 

proteins, hepcidin and Fpn. 

Material and Methods 
Chemicals 

The immortalized rat mesencephalic dopaminergic neuronal cell line (1RB3AN27, 

generally referred to as N27) was a gift from Dr. Kedar N. Prasad, University of Colorado 

Health Sciences Center (Denver, CO). RPMI-1640 medium, fetal bovine serum, L-glutamine, 

penicillin, and streptomycin, 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein 

diacetate (CM-H2DCFDA) were purchased from Invitrogen (Carlsbad, CA). EGCG, ferrous 

sulfate, ascorbic acid, mouse β-actin antibody, H2O2 were purchased from Sigma Aldrich (St. 

Louis, MO). Substrate for caspase-3, Acetyl-Asp-Glu-Val-Asp-AFC was obtained from 

Calbiochem (San Diego, CA). Rat TNFα recombinant was purchased from peprotech (Rocky 

Hill, NJ). The Cell Titer 96® AQueous Non-Radioactive Cell Proliferation assay kit was 

bought from Promega (Madison, WI). The rabbit polyclonal antibody for Fpn or hepcidin 

was purchased from Abcam (Cambridge, MA). Alexa Fluor 680 conjugated anti-mouse IgG 

and IRdye 800 conjugated anti-rabbit IgG were purchased from Invitrogen (Carlsbad, CA) 

and Rockland Inc (Gilbertsville, PA), respectively. All solutions were prepared fresh prior to 

each assay.  

Cell culture and treatment paradigm  
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N27 cells were grown in RPMI-1640 medium supplemented with 10% fetal bovine 

serum, 2 mmol/l L-glutamine, 50 units penicillin, and 50 µg/ml streptomycin and maintained 

at 37oC in a humidified atmosphere containing 5% CO2 as described in our previous studies 

[24]. Cells were treated with different concentrations of EGCG, H2O2, TNFα to determine 

the optimal doses for the experiments. To investigate the protective effect of EGCG against 

H2O2- or TNFα-induced cytotoxicity, cells were pretreated with 10 µM EGCG for 3 h, 

followed by 50 µM H2O2 or 30 ng/ml TNFα for another 24 h. Cells were collected at the end 

of each treatment for the future assay. 

Cell viability assay 

 Cell viability was measured using the Cell Titer 96 Aqueous Non-Radioactive Cell 

Proliferation kit as described earlier [25]. Briefly, cells were incubated with 10 µL 

tetrazolium compound MTS solution reagent mix at 37°C for 45 min, followed by adding 25 

µL DMSO to dissolve the formazan crystals. The absorbance was read at 490 nm with a 

reference wavelength of 670 nm using a microplate reader (Molecular Devices, Sunnyvale, 

CA).  

Caspase-3 activity assay 

Caspase-3 activity was measured as described previously [26]. The cell pellet was lysed 

with Tris buffer (50mM Tris-HCL, 1 mM EDTA, and 10 mM EGTA at pH=7.4) containing 

10 µmol/L digitonin for 20 min at 37oC. Lysates were quickly centrifuged and cell free 

supernatants were incubated with 50 µM Ac-DEVD-AFC as the fluorometric caspase-3 

substrate for 1 h at 37oC. The caspase-3 activity was measured using a fluorescence 

microplate reader with the excitation at 400 nm and emission at 505 nm. The caspase-3 

activity was expressed as fluorescent units (FU)/mg protein. 
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Intracellular ROS measurement  

The formation of intracellular ROS was measured using the CM-H2DCFDA fluorescent 

probe as described in our early publication with minor modifications [25]. In brief, cells were 

incubated with 10 µM CM-H2DCFDA along with the treatment. Fluorescence intensity was 

continuously measured using a fluorescence microplate reader with the excitation 488 nm 

and emission 515 nm with 30 min interval for 2 h.  

Western blot 

Cell pellets were lysed using a modified radioimmunoprecipitation assay (RIPA) buffer 

as described previously [27]. Cell lysates containing equal amount of protein were loaded 

and separated on 12% SDS-PAGE (for Fpn) gels or 16% Tricine-SDS-PAGE gels (for 

hepcidin). After separation, the proteins were transferred onto a nitrocellulose or 

polyvinylidene difluoride (PVDF) membrane and probed with proper antibody directed 

against hepcidin rabbit polyclonal (1:500) or Fpn rabbit polyclonal (1:1000), followed by IR-

dye 800 anti-rabbit secondary antibody (1:5000). Membranes were visualized on Odyssey 

Infrared Imaging system (LICOR, Lincoln, NE) and β-actin was used as an internal control.  

Statistics 

Data were analyzed with Prism 5.0 software (Graph Software, San Diego, CA). The 

measurements were normalized to the respective controls in each experiment. The 

differences among the treatments were compared with ANOVA with Dunnett’s or Tukey’s 

Multiple Comparison and considered significant P<0.05. 
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Results 
Cytotoxic effect of EGCG, H2O2 and TNFα  

To determine the optimal dose of EGCG, H2O2 and TNFα for the future experiments, we 

first measured the dose response cytotoxic effects of EGCG, H2O2 and TNFα using MTS 

assay. As shown in Table 4-1, no cytotoxic effect was found when cells were treated with 5 

or 10 µM EGCG for 24 h. However, N27 cell viability was reduced to 61.6% (P<0.001), 

31.2% (P<0.001) and 31.6% (P<0.001) after 24 h incubation of 25 µM, 50 µM, and 100 µM 

EGCG, respectively. The cytotoxic effects of different concentration of H2O2 and TNFα were 

also shown in Table 1. Cytotoxicity was not found with 10 µM H2O2 after 24 h incubation, 

but a reduction of 12% (P<0.01) and 48.3% (P<0.001) of cell viability was found with 30 

µM and 100 µM. Similarly, 24 h treatment of TNFα 10 ng/ml didn’t affect cell viability but 

TNFα 30 ng/ml, 60 ng/ml, 100 ng/ml significantly decreased cell viability by 24.4% (P<0.05), 

38.6% (P<0.001), 29.9% (P<0.01). Based on these results, 50 µM H2O2 and 30 ng/ml TNFα 

were chosen to induce cytotoxicity, and 10 µM EGCG was selected as the highest safe dose 

for the evaluation of neuroprotective effect in the subsequent experiments.  

Epigallocatechin gallate protects N27 cells from both TNFα and H2O2 induced-

cytotoxicity 

Protective effects of EGCG against H2O2- and TNFα-induced cytotoxicity was evaluated 

by MTS (Figure 4-1A and Figure 4-1B), caspase-3 activity (Figure 4-1C and Figure 4-1D), 

and intracellular ROS measurement (Figure 4-1E). Cell viability was decreased to 69.2% 

(P<0.01) and 89% (P<0.01) after treating with H2O2 or TNFα. However, EGCG shows 

marginal protection and increased cell viability to 88.5% and 94.8% respectively. Similarly, 

caspase-3 activity was increased to 283.9% (P<0.001) and 154% (P<0.01) after treatment 
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with H2O2 or TNFα, but EGCG significantly protected against H2O2- or TNFα-induced 

apoptosis by reducing caspase-3 activity by 50.2% (P<0.001) and 30.1% (P<0.05), 

respectively. In addition, intracellular ROS was increased by 4.5% (P<0.001), 5.5% 

(P<0.001), 6.8% (P<0.001) after incubating with H2O2 for 60 min, 90 min, 120 min, and 

EGCG pretreatment significantly counteracted the effect (P<0.001) and protected against 

H2O2-induced ROS in a time dependent manner.  

Epigallocatechin gallate protects N27 cells from both TNFα- and H2O2-induced 

cytotoxicity through downregulation of hepcidin and upregulation of Fpn  

To further explore the mechanisms involved in the protective effect of EGCG against 

H2O2- and TNFα-induced cytotoxicity, we assessed the hepcidin and Fpn protein expressions. 

As shown in ( 

 

 

 

 

 

 

 

Figure 4-2A and  

 

 

 



www.manaraa.com

 111 

 

 

 

 

 

Figure 4-2B). As expected, 24 h of EGCG alone treatment didn’t affect either hepcidin 

or Fpn expressions. However, H2O2 and TNFα significantly upregulated hepcidin expression 

by 66.3% (P<0.05) and 64.1% (P<0.05), and 3 h pretreatment of EGCG down regulated 

H2O2-induced hepcidin expression by 34.1% (P<0.05) and TNFα-induced hepcidin 

expression by 32.1% (P>0.05) respectively ( 
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Figure 4-2C). Moreover, H2O2 and TNFα lowered Fpn expression by 25% (p>0.05) and 

55.1% (p<0.05) and EGCG pretreatment marginally counteracted this effect, and increased 

Fpn expression by 42.5% (P>0.05) and 44.5% (P>0.05), respectively ( 

 

 

 

 

 

 

 

Figure 4-2B and  

 

 

 

 

 

 

 



www.manaraa.com

 113 

 

Figure 4-2D). As a positive control, we also tested the effect of 50 µM iron on hepcidin 

and Fpn expressions ( 

 

 

 

 

 

 

 

Figure 4-2E and  

 

 

 

 

 

 

 

Figure 4-2F). Iron partially elevated hepcidin expression by 79.9% and significantly 

reduced Fpn by 47.6% (P<0.05), and EGCG pretreatment reversed these effects and 

decreased hepcidin expression by 19.7% and increased Fpn to the control level (P<0.01).  
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Discussion 
 The goal of this current study was to investigate the antioxidant and anti-inflammatory 

effects of EGCG in a cell culture model of PD. We used H2O2 and TNFα to induce oxidative 

stress or inflammation mediated damage in dopaminergic neurons. Hydrogen peroxide is 

produced from the enzymatic or spontaneous dismutation of superoxide and further 

converted to highly toxic hydroxyl radicals via Fenton reaction [28]. Hydrogen peroxide can 

be generated during dopamine turnover and auto-oxidation of dopamine, and H2O2 derived 

radicals is implicated in neurotoxins MPTP or rotenone mediated neuronal death [29]. 

Therefore, H2O2 is extensively used in vitro studies to elicit the mechanisms of which 

oxidative damage-induced neuronal apoptosis, as well as to screen neuroprotective agents in 

neurodegenerative diseases [30-32]. A previous study has shown that 250 µM H2O2 

increased intracellular ROS by 50 % after 24 h treatment and caspase 3 activity by 210 % 

after 8 h treatment [33]. Similarly, our current study showed a lower dose of 50 µM H2O2 

started to increase intracellular ROS after 60 min, and significantly elevate caspase 3 activity 

after 15 h and induce cell death after 24 h treatment. Our study also found that TNFα had 

similar effects on dopaminergic N27 cells as H2O2. TNFα is a pro-inflammatory cytokine that 

is secreted by microglia in response to various stimuli, and has been considered to play a key 

role in the neuroinflammation mediated cell death in neurodegenerative disorders including 

PD [34]. TNFα not only activates and recruits immune cells to propagate inflammation, but 

also directly induces oxidative stress by the activation of ROS generation [11]. This might 

explain why TNFα and H2O2 have similar toxic effects and induce caspase activity and 

apoptosis in dopaminergic neurons. Moreover, the protection of EGCG against both TNFα- 

and H2O2-induced apoptosis suggests both antioxidant and anti-inflammatory properties of 
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EGCG. Since ROS and inflammation can have synergistic effect and eventually result in a 

feed-forward loop of neurodegeneration in PD, EGCG might be the promising candidate for 

prevention or halting the progression of the disease. 

Hepcidin-Fpn axis is a master regulation of cellular iron metabolism and controls 

cellular iron export in response to iron stores, oxidative stress, inflammation [35]. Although 

the role of hepcidin in neurodegenerative disorders is very limited, recent research has shown 

that hepcidin and Fpn were widely expressed in the central nervous system and might be 

involved in neuroinflammation and brain iron dysregulation [17, 18, 36]. One recent in vivo 

study shows intracerebroventricular injection of lipopolysaccharides (LPS) in the rat brain 

upregulated hepcidin and downregulated Fpn in cortex and SN [36]. Another in vitro study 

shows that inflammatory cytokines such as TNFα upregulated the expressions of iron 

importer divalent metal transporter 1 (DMT-1) and suppressed Fpn expression, resulting in 

iron accumulation in neurons or astrocytes [17]. Our previous study found that neurotoxin 6-

OHDA increased the expression hepcidin and decreased the expression of Fpn, leading to 

iron accumulation in dopaminergic neurons [23]. In agreement with these studies, this study 

shows that H2O2 and TNFα can significantly upregulate hepcidin expression and marginally 

reduce Fpn expression. These results further implicate the role of iron related proteins in both 

oxidative stress and inflammation mediated cell damage and demonstrated the link among 

iron dysregulation, oxidative stress and neuroinflammation. We also found that iron alone 

treatment on dopaminergic neurons had more significant effects on Fpn expression than 

hepcidin. Since Fpn is regulated not only by hepcidin at the post-translation level, but also by 

iron regulatory protein/iron responsive element at the posttranscriptional level [37], our 
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results suggest that iron alone treatment might reduce Fpn expression via hepcidin 

independent mechanism.  

Epigallocatechin gallate is the most abundant polyphenol in green tea and has been 

shown to prevent neurotoxin MPTP- and 6-OHDA-induced neurodegeneration in both in 

vitro and in vivo studies [21, 38-40]. The underlying protective mechanisms include its 

antioxidant, anti-inflammatory, iron chelating properties, its ability to interfere with protein 

aggregation and intracellular signaling pathways [41]. Our current study demonstrates that 

EGCG can prevent both oxidative stress and inflammation mediated neurodegeneration 

through the mediation of iron related proteins, hepcidin and Fpn.  

Overall, our study suggests the cross talk between iron accumulation, oxidative stress 

and inflammation, and that EGCG protects against H2O2- and TNFα-induced neurotoxicity 

through the mediation of iron regulated proteins hepcidin and Fpn. Our study shed light on 

some of the mechanisms by which EGCG provides protection in PD and further study is 

needed to confirm the role of hepcidin-Fpn axis in EGCG mediated protection in an in vivo 

model of PD.  
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Tables and figures 
Table 4-1 Dose response effects of EGCG, H2O2 and TNFα on cell viability. 

 
 Cell Viability 

(%) 

 Cell Viability 

(%) 

 Cell Viability 

(%) 

EGCG (µM)  H2O2 (µM)  TNFα (ng/ml)  

0 100.0 0 100.0 0 100.0 

5 92.0 10 93.1 10 81.4 

10 99.9 30 88.0** 30 75.6* 

25 61.6*** 100 51.7*** 60 61.4*** 

50 31.2***   100 70.1** 

100 31.6***     

 
The values (mean ± SEM) represent percentage of the respective controls (no treatment); 
ANOVA with Dunnett’s multiple Comparisons test was used to detect the differences 
between the treatments and controls; *P<0.05; **P<0.01; ***P<0.001. 
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Figure 4-1 The protective effect of EGCG against H2O2- or TNFα-induced neurotoxicity 
measured by MTS (A, n=8; B, n=8), caspase-3 activity (C, n=4; D, n=5) and 
intracellular ROS (E, n=8) in N27 cells; Cells were treated with 10 µM EGCG, followed 
by the treatment of 50 µM H2O2 or 30 ng/ml TNFα for another 15 or 24 h. The values 
(mean ± SEM) are normalized to their respective controls and ANOVA with Tukey’s 
Multiple Comparison was used to detect the differences among the treatments and 
controls; *P<0.001. Bars sharing same letters are not significantly different. 
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Figure 4-2 The protective effect of EGCG 
against H2O2 (A and B), TNFα (C and D), or ferrous sulfate (E and F)-induced altered 
expressions of hepcidin or Fpn in N27 cells (n=3); Cells were treated with 10 µM EGCG 
with 3 h, followed by the treatment of 50 µM H2O2 or 30 ng/ml TNFα or ferrous sulfate 
for another 15 or 24 h. The values (mean ± SEM) are normalized to their respective 
controls and ANOVA with Tukey’s Multiple Comparison was used to detect the 
differences among the treatments and controls; Bars sharing same letters are not 
significantly different. 
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Abstract  
Background: Parkinson’s disease (PD) is a neurodegenerative disorder that has been 

associated with many factors, including oxidative stress, iron accumulation and 

inflammation. Epigallocatechin gallate (EGCG) is the major polyphenol in green tea with 

antioxidant, anti-inflammatory and iron chelating properties. 

Objective: The objective of the present study is to determine the neurorescue effects of 

EGCG in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-induced PD and to 

examine the involvement of iron-related proteins in that protective effect. 

Methods: We evaluated the neurorescue effect of EGCG (25 mg/kg, 7 d, oral administration) 

against MPTP (20 mg/kg, 3 d, IP)-induced neurodegeneration in C57 black mice. The 

neurorescue effect of EGCG was assessed by motor behavior tests, neurotransmitter analysis, 

oxidative stress indicators, and iron related protein expressions. 

Results: MPTP treatment shortened mice’s latency to fall from the rotarod by 16% (P<0.05), 

decreased striatal dopamine (DA) level by 58% (P<0.001) and dihydroxyphenylacetic acid 
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(DOPAC) by 35% (P<0.05), and increased serum protein carbonyls by 68% (P<0.05). 

However, EGCG post-treatment significantly rescued MPTP-induced neurotoxicity by 

increasing the rotational latency by 17% (P<0.05), elevating DA (40%, P<0.05) and DOPAC 

(32%, P>0.05), and reducing serum protein carbonyls by 29% (P>0.05). EGCG significantly 

(P<0.05) increased ferroportin (Fpn) by 44%, and reduced hepcidin expression by 36% 

(P>0.05), suggesting the protection of EGCG might be associated with increasing iron 

exporter expression to relieve nigral iron burden but not by reducing iron import by divalent 

metal transporter-1 (DMT-1). 

Conclusion: Overall, our study demonstrated that EGCG not only can restore MPTP-induced 

functional and neurochemical deficits but also offer a neurorescue effect by regulating iron 

export protein Fpn in substantia nigra (SN) and reducing oxidative stress.  

Key words: Parkinson’s disease EGCG MPTP Neurorescue 

Introduction 
Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized primarily 

by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN), 

resulting in irreversible motor dysfunction such as resting tremor, bradykinesia, and postural 

instability (1). The exact causes and mechanisms of pathogenesis of PD remain unknown, 

however, the involvement of oxidative stress, chronic inflammation, and iron accumulation 

have been the focus of attention in recent years (2,3).  

The role of oxidative stress in initiating or promoting neurodegeneration is demonstrated 

by the postmortem brain analyses showing increased levels of lipid peroxidation, carbonyl 

modifications of proteins, and DNA and RNA oxidation (4). Iron accumulation is also 
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thought to be involved in PD pathogenesis since free iron can enhance oxidative stress by 

generating highly toxic hydroxyl radicals through Fenton reactions. Abnormal iron 

accumulation in the SN of PD patients has been substantiated by MRI as well as in 

postmortem brains, and is considered an invariable pathological feature of PD (5-7). It is 

suggested that brain iron accumulation may be caused by a number of factors including a 

disturbed blood-brain barrier, occupational exposure, or misregulation of iron related proteins 

(8,9). Hepcidin-Fpn axis is a key regulator for cellular iron metabolism. Hepcidin is a peptide 

primarily secreted by the liver that regulates cellular iron efflux by binding to iron exporter 

Fpn on the cell surface and inducing its internalization and degradation (10). Recent studies 

suggest the hepcidin-Fpn axis is widely expressed in the brain and might play an important 

role in brain iron homeostasis (11,12). 

For the past several decades, several animal models of PD have been developed to study 

the pathophysiology and to assess the potential of neuroprotective therapies. 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a widely used neurotoxin that crosses the blood 

brain barrier, converts to its metabolite 1-methyl-4-phenylpyridinium (MPP+), and induces 

neurodegeneration by inhibiting mitochondrial complex I activity and generating reactive 

oxygen species (ROS) (13). Recent studies have also demonstrated nigral iron accumulation 

in MPTP-induced animal models (14,15), which might be associated with altered expression 

of iron related proteins such as increased expression of iron importer divalent metal 

transporter-1 (DMT-1), or decreased expression of iron exporter, Fpn (16,17). Moreover, the 

effectiveness of an iron restricted diet or pharmacological and genetic iron chelation further 

supports the participation of iron in MPTP-induced neurodegeneration (18,19).  
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Green tea has been widely consumed in Asian countries and the inverse relationship of 

tea consumption and the incidence of dementia, PD and Alzheimer’s has been observed (20). 

Epigallocatechin gallate (EGCG) is the most abundant tea polyphenol and shows diverse 

biological effects such as radical scavenging, iron chelating, and anti-inflammatory 

properties (21-23). A number of studies have demonstrated the neuroprotective effects of 

EGCG against MPP+- or MPTP-induced neurodegeneration in both cell culture and animal 

models of PD (24-26). However, its neurorescue potential in post MPTP-induced 

Parkinsonism is not very well studied. One study suggested that oral EGCG administration 

resulted in a substantial recovery of tyrosine-hydroxylase-positive neurons post MPTP 

treatment (20), but studies on the neuroprotective effects of EGCG through iron related 

proteins are limited. The objective of our study is to determine the neurorescue effects of 

EGCG in MPTP-induced PD and to examine the involvement of iron-related proteins in that 

protective effect.  

Materials and Methods 
Chemicals: 

 Mouse β-actin antibody, MPTP, EGCG were purchased from Sigma-Aldrich (St. Louis, 

MO). Perchloric acid and sodium metabisulfite (Na2S2O5) were purchased from Fisher 

Scientific (Pittsburgh, PA). The rabbit polyclonal antibodies for ferroportin (Fpn), divalent 

metal transporter-1 (DMT-1) with and without iron response element (IRE), and hepcidin 

were purchased from Abcam (Cambridge, MA). Alexa Fluor 680 conjugated anti-mouse IgG 

was purchased from Invitrogen (Carlsbad, CA). IRdye 800 conjugated anti-rabbit IgG and 

western blot blocking buffer were purchased from Rockland Inc (Gilbertsville, PA). 
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Commercial assay kit for protein carbonyl was purchased from Cayman Chemical Company 

(Ann Arbor, MI).  

Animals and treatment: 

Male C57 black mice (~25 g) were purchased from Charles River (Wilmington, MA). 

The mice were housed individually in a temperature/humidity controlled room with a 12-h 

light/dark cycle. Food and water were provided ad libitum. All the procedures were approved 

by the Institutional Animal Care and Use Committee at Iowa State University. Mice were 

divided into 3 groups: control (n=10), MPTP (n=10), MPTP+EGCG (n=10). The mice in the 

last two groups were given MPTP intraperitoneally at the dose of 20 mg/kg for first 3 d to 

induce neurodegeneration. On day 4, MPTP+EGCG group was given EGCG (25 mg/kg via 

oral gavage) for additional 7 d. The control group was given equal volume of PBS. All the 

animals were sacrificed by decapitation 3 d after the last dose of EGCG. 

Accelerated rotarod test: 

The motor coordination and balance alterations were measured by the accelerating 

rotarod test as described previously (27). Briefly, the mice were first trained on a stationary 

rod for 2 min and the mice that fell during training were placed back on the rod. For the 

performance test, the mice were assessed on five occasions at an accelerating speed of 4 to 

60 rpm for 3 min. The length of time each mouse was able to stay on the rotating rod was 

recorded with the computer software and averaged for the analysis. The trials were excluded 

if the mice jumped off the rod.  

Protein carbonyl assay: 

Blood samples from mice were collected by cardiac puncture and serum was used for the 

assessment of protein carbonyls following the instructions provided in the commercial kit. 
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Protein carbonyl content is a general indicator of oxidative stress measured as protein 

oxidation (28). According to the protocol, protein carbonyls react with 2,4-

dinitrophenylhydrazine (DNPH) to produce corresponding hydrazones, which can be 

quantified spectrophotometrically at the wavelength of 360 nm. The carbonyls were 

determined from the differences in absorbance between DNPH-reacted samples and non-

reacted samples, and normalized to protein concentration. 

Striatal dopamine and its metabolite analysis: 

The striatal dopamine (DA) and its metabolites were determined by high performance 

liquid chromatography (HPLC) with electrochemical detection (EC) as described previously 

(29). The neurotransmitters from striatal tissues were extracted using an antioxidant solution 

containing 0.1M perchloric acid, 0.05% Na2EDTA, and 0.1% Na2S2O5 and centrifuged at 

13200 x g for 25 min. Dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were 

separated isocratically on a C-18 reversed-phase column at a flow rate of 0.6 ml/min using a 

Dionex Ultimate 3000 HPLC system (pump ISO-3100SD, Thermo Scientific, Bannockburn, 

IL) equipped with a refrigerated autosampler (model WPS-3000TSL) and electrochemical 

detection system (CoulArray model 5600A coupled with microdialysis cell 5014B and a 

guard cell model 5020). The integration and data analysis was performed in ESA Coularray 

3.10 software (ESA Inc., Bedford, MA). DA and DOPAC levels were normalized to wet 

tissue weight and converted to ng/mg protein. Data were represented as percentage of the 

control group. 

Western blot analysis: 

Substantia nigral tissue was lysed with modified RIPA lysis buffer and the lysates were 

loaded and separated on 12% SDS-PAGE gels or 16% Tricine-SDS-PAGE gels as described 
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previously (30). After separation, the proteins were transferred onto a nitrocellulose or 

polyvinylidene difluoride (PVDF) membrane and nonspecific binding sites were blocked 

with western blot blocking buffer for 1 h. The membranes with transferred proteins were 

probed with primary antibody directed against DMT-1 + IRE rabbit polyclonal (1:1000), 

hepcidin rabbit polyclonal (1:500) or Fpn rabbit polyclonal (1:1000), followed by incubation 

with IR-dye 800 anti-rabbit secondary antibody (1:5000). Membranes were visualized on 

Odyssey Infrared Imaging system (LICOR, Lincoln, NE) and quantified with image J with β-

actin as an internal control.  

Statistics: 

Data were analyzed with Prism 5.0 software (Graph Software, San Diego, CA). The 

values for each treatment group were normalized to the control group. The differences among 

the treatments were compared with ANOVA with Tukey’s multiple comparison test and 

considered significant at P<0.05. 

Results 
Epigallocatechin gallate reversed MPTP-induced reduction of rotarod activity: 

  The differences in weight gain of the animals were not significantly different among 

the treatments (Table 5-1). The average weight gain in three groups ranged from 1.5 g to 2.5 

g. The protection of EGCG against MPTP-induced behavioral deficits was evaluated by the 

accelerated rotarod test as shown in Figure 5-1A. The MPTP treated mice showed an 

impaired ability to remain on the rod, showing a 16% reduction in the average time spent on 

the rotarod (P<0.05) when compared with the control group. However, rotarod activity with 
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EGCG co-administration was similar to control and significantly improved (P <0.05) when 

compared with the impaired MPTP treatment group.  

Epigallocatechin gallate protected against MPTP-induced oxidative stress:  

 Epigallocatechin gallate treatment reduced MPTP-induced oxidative stress, as measured 

by protein carbonyls (Figure 5-1B). Serum protein carbonyls were 1.7-fold higher (P<0.05) 

in MPTP treated mice compared to the control, however, they were reduced by 29% (p>0.05) 

with EGCG post-treatment. 

Epigallocatechin gallate preserved MPTP-induced striatal DA reduction: 

 Epigallocatechin gallate showed protection against MPTP-induced depletion of striatal 

DA (Figure 5-2A) and its metabolite DOPAC (Figure 5-2B). Dopamine and DOPAC were 

significantly reduced by 58% (P<0.001) and 35% (P<0.05), respectively in MPTP treated 

mice. However, EGCG post-treatment partially reversed the reduction, and increased DA and 

DOPAC level by 40% (P<0.05) and 32%, respectively.  

Epigallocatechin gallate alters iron-related protein expression: 

To further study the mechanisms involved in the neurorescue effect of EGCG, we 

assessed iron related proteins DMT-1, hepcidin and Fpn expression in the SN. As shown in 

Figure 5-3, MPTP treatment slightly upregulated DMT-1 and hepcidin by 14% and 11%, 

and down regulated Fpn by 6% but the differences were not significant. Although EGCG 

post-treatment had no effect on DMT-1 expression, a decreased trend in hepcidin expression 

by 36% (P>0.05), but increased Fpn expression by 44% (P<0.05) compared to MPTP alone 

group. 
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Discussion  
 Parkinson’s disease is the second most common neurodegenerative disorder and it 

affects around 5.2 million people worldwide (31). However, to date there is no strategy 

available for curing PD patients and the traditional therapies such as with levodopa only 

provide symptomatic relief while presenting significant motor complications (32). Based on 

the involvement of iron accumulation and oxidative stress in the pathogenesis of PD, the 

compounds with free radical scavenging and iron chelating properties have been thought of 

as promising candidates for treating PD. The iron chelator deferoxamine (DFO) is reported to 

reduce iron accumulation and oxidative stress, and protect against MPTP-induced 

neurotoxicity in mice (33). The metal chelator, clioquinol is also demonstrated to chelate 

both ferrous and ferric iron and protect against MPTP-induced loss of striatal DA in vivo 

(19). Our previous studies also found that the natural iron chelator phytic acid could protect 

both MPP+- and 6-hydroxydopamine (6-OHDA)-induced dopaminergic neuron apoptosis in 

normal and iron excess conditions (34,35). Although these iron chelators may be effective in 

providing neuroprotection in PD, their therapeutic use in PD patients is limited because of 

their inability to cross the blood-brain barrier and/or causing severe side effects. 

Deferoxamine has limited ability to cross blood brain barrier due to its hydrophilic nature and 

is reported to cause neurotoxicity with high doses (36,37). The safety of clioquinol was also 

questioned since it might cause serum vitamin B12 deficiency (38). Recent clinical studies 

utilizing deferiprone have shown decreased iron brain iron content and slight improvement in 

motor symptoms, suggesting the importance of iron chelation in treating PD patients (39,40).  

Epigallocatechin gallate is the major green tea polyphenol that has gained attention in 

PD because of its free radical scavenging, iron chelating and anti-inflammatory properties 
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(23). In vitro studies have shown that EGCG could protect from both MPP+ and 6-OHDA-

induced neurotoxicity (24,41). In agreement, in vivo studies in mice also show that EGCG 

could significantly prevent striatal dopamine depletion and loss of TH positive neurons 

induced by MPTP (26,42). The natural origin of EGCG and its ability to cross the blood 

brain barrier also make it an appealing clinical approach for PD treatment (23). It is reported 

that EGCG could be easily absorbed from the digestive tract and widely distributed into 

various organs, including the brain, which had a similar concentration to the level found in 

the liver, kidney, lung, heart, spleen and pancreas (42).  

Previous studies focused on the neuroprotective effect of EGCG (24,26), but studies to 

evaluate the neurorescue effect after inducing neurotoxicity are limited. In addition, the effect 

of EGCG on iron related proteins in the brain that are perturbed in PD is not well studied. 

One study showed that oral EGCG (5 mg/kg) administration for two weeks after MPTP 

treatment (20 mg/kg, 4 d) resulted in a substantial recovery of the nigral dopaminergic 

neurons (20). Consistent with this study, our results also show that EGCG post-treatment (25 

mg/kg, 7 d) not only rescued MPTP-induced dopamine depletion, but also improved motor 

deficits caused by MPTP as assessed by accelerated rotarod test. Striatal dopamine depletion 

in MPTP mice was attenuated by EGCG treatment, although the dopamine concentrations 

with EGCG were not increased compared to the control group. Since dopamine depletion is 

the major cause of motor dysfunction in PD, it is encouraging to see the improvement with 

EGCG for its future potential use in humans. The accelerated rotarod test is a behavior test 

used to measure animals’ innate motor skills which resemble akinesia and bradykinesia in 

human Parkinsonism (41)(43). Administration of MPTP resulted in decreased rotarod 

duration and EGCG post-treatment completely corrected motor deficits, suggesting its ability 
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to alleviate PD symptoms. In addition, our results also show that EGCG post-treatment 

reduced serum protein carbonyls that were elevated by MPTP. This finding is consistent with 

our previous publication showing 3 cups of green tea consumption for 3 months improved 

antioxidant enzymes and reduced oxidative damage to lipids and proteins in PD patients (44).  

In our study MPTP treatment didn’t significantly affect DMT-1, hepcidin or Fpn 

expression in the SN. These results are inconsistent with a previous study showing nigral iron 

accumulation with increased DMT-1 expression and decreased Fpn expression in a chronic 

MPTP-induced PD model (16). However, our study used a subacute MPTP model (20 mg/kg, 

3 d) rather than a chronic MPTP model (30 mg/kg, 10 doses on a 5-week schedule). A higher 

dose with longer treatment of MPTP in the previous publication might account for observed 

nigral iron accumulation by altering iron transporters. We found that EGCG did not affect 

hepcidin or DMT-1 expression but significantly affected nigral Fpn expression. The plausible 

explanation might be that Fpn mRNA might be regulated not only by hepcidin but also via 

iron regulatory proteins (IRP) since it contains IRE responsive element (IRE) in the 5’ region 

(45). It has been reported that IRP is regulated by oxidative stress and intracellular iron 

concentrations. Since EGCG has antioxidant and iron chelating abilities, we expect that IRP 

is up regulated, thus increasing Fpn expression (45) with its treatment. To our knowledge, 

this is the first in vivo study to show significant upregulation of Fpn after EGCG treatment. 

Although these results do not support our previous study regarding EGCG’s effect on 

hepcidin and DMT-1, they are in agreement with our study showing protection in 6-OHDA-

induced neurotoxicity by alleviating intracellular iron level and upregulating Fpn in a cell 

culture model of PD (46). However, the differences between two studies are the use of 

different neurotoxins as well as using different models (in vivo vs in vitro). Since iron 
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accumulation can exacerbate MPTP-induced dopaminergic neurodegeneration (47), 

upregulation of Fpn might be one of the underlying neuroprotective mechanisms of EGCG 

by reducing nigral iron. The dose of 25 mg/kg EGCG in our study is approximately 2 mg/kg 

in humans using the body surface area (BSA) normalization method (48), or 140 mg EGCG 

daily consumed by a 70 kg person. Based on a previous study showing a cup of green tea (2.5 

g of green tea leaves / 200 ml of water) may contain up to 90 mg of EGCG (49), habitual 

consumption of green tea (3 cups per day) can reach more than the target amount 140 mg 

(44). 

Overall, our study demonstrated that EGCG not only can restore MPTP-induced 

functional and neurochemical deficits, but also offers its neurorescue effect by regulating 

iron export protein Fpn in the SN and reducing oxidative stress. Although future clinical 

studies are needed to confirm the protective effect of EGCG, our findings suggest its 

potential therapeutic use after the onset of PD.  
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Tables and figures 
Table 5-1 Weight gain* of animals during the study period.  

 

 Initial weight (g) Final weight (g) Weight gain (g) 

Control 23.9 ± 0.2 25.6 ± 0.3 1.5 ± 0.4 

MPTP 23.3 ± 0.3 26.0 ± 0.3 2.5 ± 0.3 

MPTP + EGCG 23.0 ± 0.3 25.1 ± 0.2 1.9 ± 0.3 
*mean ± SEM. The differences in weight gain are not significantly different among three 
groups. 
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A                                                                                   B 

 

Figure 5-1 The neurorescue effect of EGCG against MPTP -induced motor deficits and 
oxidative stress. Motor coordination was measured by accelerated rotarod test (A, 
n=10), and oxidative stress was measured as protein carbonyls in serum (B, n=7-8). The 
values (mean ± SEM) are normalized to the control group and ANOVA with Tukey’s 
Multiple Comparison was used to detect the differences among the three groups. Bars 
not sharing the same letters are significantly different (P <0.05).  
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Figure 5-2 The neurorescue effect of EGCG against MPTP-induced neurochemical 
changes as determined by striatal DA (A, n=10) and DOPAC (B, n=10) concentrations. 
The values (mean ± SEM) are normalized to control group and ANOVA with Tukey’s 
Multiple Comparison was used to detect the differences among the three groups. Bars 
not sharing the same letters are significantly different (P <0.05). 
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Figure 5-3 The effect of EGCG on MPTP-induced alteration in iron related proteins 
DMT-1 (A, n=6), hepcidin (B, n=6) and Fpn (C, n=6). The top panel shows the 
representative western blots (n=3). The values (mean ± SEM) are normalized to the 
control group and ANOVA with Tukey’s Multiple Comparison was used to detect the 
differences among the three groups. Bars not sharing the same letters are significantly 
different (P <0.05).  
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CHAPTER 6  GENERAL CONCLUSION 

General Discussion 
Parkinson’s disease (PD) is the second most common neurodegenerative disorder that is 

characterized by both motor and non-motor symptoms. Although the exact cause of PD 

remains elusive, both genetic and environmental factors are suggested to be involved in the 

development of the disease. Current therapies for PD focus on relieving the symptoms but no 

treatments are available to attenuate or reverse the disease progression. Therefore, 

understanding the pathogenesis of the disease and developing the novel therapies to prevent 

the onset or progression of the disease is important.  

Iron is an essential component of the normal cell metabolism and physiology. However, 

their dysregulation can generate oxidative stress and neuroinflammation and promote protein 

aggregation leading to neurodegeneration. A growing body of data has demonstrated that 

iron accumulation in substantia nigra (SN) in PD patients and neurotoxin-induced PD models, 

suggesting the role of iron dysregulation in the pathogenesis of PD. The design of iron 

chelation therapy aimed to reduce excess brain iron currently shows great promise and might 

provide a new insight into therapies directed towards prevention or slowing down the disease 

progression. However, disadvantages associated with iron chelation therapy including their 

low bioavailability, poor blood brain barrier permeability and toxic side effects limited their 

further investigation in clinical settings.  

Natural iron chelators derived from food and plants have attracted increasing interest 

because of their safety and low toxicity. Epigallocatechin gallate (EGCG) is the major tea 

polyphenol and might be a good candidate for PD treatment due to its antioxidant, anti-



www.manaraa.com

 149 

 

inflammatory and iron chelating properties. Our study shows EGCG protected against both 

tumor necrosis factor alpha (TNFα)- and hydrogen peroxide (H2O2)-induced neuronal 

apoptosis in in vitro models of PD, and the observed neuroprotection is through the inhibition 

of oxidative stress and neuroinflammation, which might be mediated by hepcidin and 

ferroportin (Fpn). In addition, we also found that EGCG rescued dopaminergic neurons after 

neurotoxin 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) treatment in an in vivo 

model of PD and the protective mechanism might be associated with its ability to regulate 

Fpn expression in the SN and reduce oxidative stress.  

 Overall, our study demonstrates the preventative or therapeutic role of EGCG in the 

treatment of PD (Figure 6-1). Future studies are needed to confirm the protective role of 

EGCG in clinical settings.  

Figure 6-1 The preventive and therapeutic role of EGCG in PD treatment. EGCG: 
Epigallocatechin gallate; PD: Parkinson’s disease; Fpn: Ferroportin. 
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